Novel Global Community Educational Foundation, Sydney, Australia.
AFNP Med Austria, Haidingergasse 29, 1030 Wien, Austria.
Curr Top Med Chem. 2019;19(6):413-425. doi: 10.2174/1568026619666190311125256.
Latest studies reveal the importance of Protein-Protein interactions on physiologic functions and biological structures. Several stochastic and algorithmic methods have been published until now, for the modeling of the complex nature of the biological systems.
Biological Networks computational modeling is still a challenging task. The formulation of the complex cellular interactions is a research field of great interest. In this review paper, several computational methods for the modeling of GRN and PPI are presented analytically.
Several well-known GRN and PPI models are presented and discussed in this review study such as: Graphs representation, Boolean Networks, Generalized Logical Networks, Bayesian Networks, Relevance Networks, Graphical Gaussian models, Weight Matrices, Reverse Engineering Approach, Evolutionary Algorithms, Forward Modeling Approach, Deterministic models, Static models, Hybrid models, Stochastic models, Petri Nets, BioAmbients calculus and Differential Equations.
GRN and PPI methods have been already applied in various clinical processes with potential positive results, establishing promising diagnostic tools.
In literature many stochastic algorithms are focused in the simulation, analysis and visualization of the various biological networks and their dynamics interactions, which are referred and described in depth in this review paper.
最新的研究揭示了蛋白质-蛋白质相互作用对于生理功能和生物结构的重要性。迄今为止,已经发表了几种随机和算法方法,用于模拟生物系统的复杂性质。
生物网络计算建模仍然是一项具有挑战性的任务。复杂细胞相互作用的构建是一个非常感兴趣的研究领域。在这篇综述论文中,我们从分析的角度介绍了几种用于构建基因调控网络和蛋白质-蛋白质相互作用网络的计算方法。
在本综述研究中,介绍并讨论了几种著名的基因调控网络和蛋白质-蛋白质相互作用网络模型,例如:图表示、布尔网络、广义逻辑网络、贝叶斯网络、关联网络、图式高斯模型、权重矩阵、反向工程方法、进化算法、正向建模方法、确定性模型、静态模型、混合模型、随机模型、Petri 网、生物环境演算和微分方程。
基因调控网络和蛋白质-蛋白质相互作用方法已经在各种临床过程中得到了应用,并取得了潜在的积极结果,为建立有前途的诊断工具奠定了基础。
在文献中,许多随机算法专注于模拟、分析和可视化各种生物网络及其动态相互作用,并在本文中进行了深入的介绍和描述。