Suman Sigridur G, Gretarsdottir Johanna M
Met Ions Life Sci. 2019 Jan 14;19. doi: 10.1515/9783110527872-020.
Physiological metabolism of cyanide takes place by a single major pathway that forms non-toxic thiocyanate that is subsequently excreted. Rhodanese is the primary enzyme to execute metabolism of cyanide with minor pathways from other sulfurtransferases in vivo. The rhodanese enzyme depends on sulfur donor availability to metabolize cyanide and poisoning occurs at elevated cyanide concentrations in vivo. Cyanide interacts with over 40 metalloenzymes, but its lethal action is non-competitive inhibition of cytochrome c oxidase, halting cellular respiration and causing hypoxic anoxia. Only a handful of antidotes for treatment of cyanide poisoning are known; they are primarily inorganic compounds and metal complexes which are intended to intercept cyanide before it inhibits cellular respiration. The inorganic compounds manipulate hemoglobin, forming methemoglobin, or supply sulfur for the rhodanese enzyme. The metal complexes intercept the cyanide and bind it before reaching its target. Cobalt complexes of corrins and vitamin B12 derivatives are the state-of-the-art agents, while the longest employed complex, Co2EDTA, is designed to deliver "free" cobalt for binding of cyanide. Compounds that are in development are discussed from the point of how they are designed to intercept cyanide. The challenge of reversing the cyanide inhibition of cytochrome c oxidase is based on the catalytic active site structure and reactivity. General information about history and occurrence of poisoning and clinical symptoms is discussed and the challenges related to analytical methods available to analyze blood cyanide levels and to confirm the presence of cyanide poisoning.
氰化物的生理代谢通过单一主要途径进行,该途径形成无毒的硫氰酸盐,随后硫氰酸盐被排出体外。硫氰酸酶是体内执行氰化物代谢的主要酶,其他硫转移酶也参与少量代谢途径。硫氰酸酶依赖硫供体来代谢氰化物,当体内氰化物浓度升高时会发生中毒。氰化物与40多种金属酶相互作用,但其致命作用是对细胞色素c氧化酶的非竞争性抑制,从而停止细胞呼吸并导致低氧性缺氧。已知的用于治疗氰化物中毒的解毒剂只有几种;它们主要是无机化合物和金属络合物,旨在在氰化物抑制细胞呼吸之前将其拦截。无机化合物通过操纵血红蛋白形成高铁血红蛋白,或为硫氰酸酶提供硫。金属络合物在氰化物到达其靶点之前将其拦截并结合。钴胺素的钴络合物和维生素B12衍生物是目前最先进的药物,而使用时间最长的络合物Co2EDTA旨在提供“游离”钴以结合氰化物。从它们如何设计来拦截氰化物的角度讨论了正在研发的化合物。逆转氰化物对细胞色素c氧化酶抑制作用的挑战基于催化活性位点的结构和反应性。讨论了中毒的历史、发生情况和临床症状的一般信息,以及与分析血氰水平和确认氰化物中毒存在的现有分析方法相关的挑战。