Suppr超能文献

注意启发式网络:不变模式识别模型中的陡峭学习曲线。

Attention Inspired Network: Steep learning curve in an invariant pattern recognition model.

机构信息

Department of Computer Science and Engineering, INESC-ID & Instituto Superior Técnico, University of Lisbon, Av. Prof. Dr. Aníbal Cavaco Silva, 2744-016 Porto Salvo, Portugal.

出版信息

Neural Netw. 2019 Jun;114:38-46. doi: 10.1016/j.neunet.2019.01.018. Epub 2019 Feb 26.

Abstract

Hubel and Wiesel's study about low areas of the visual cortex (VC) inspired deep models for invariant pattern recognition. In such models, simple and complex layers alternate local feature extraction with subsampling to add invariance to distortion or transformations. However, it was shown that to tolerate large changes between examples of the same category, the subsampling operation has to discard so much information that the model loses the capability to discriminate between categories. So, in practice, small changes are tolerated by these layers and, afterwards, a powerful classifier is introduced to do the rest. By incorporating insights from higher areas of the VC, we add to the already used retinotopic step an object-centered step which increases invariance capabilities without losing so much information. By doing so, we reduce the need for a powerful, data hungry classification layer and, thus, are able to introduce a simple classification mechanism which is based on selective attention. The resulting model is tested with an invariant pattern recognition task in the MNIST and ETL-1 datasets. We verify that the model is able to achieve better accuracies with less training examples. More specifically, on the MNIST test set, the model achieves a 100% accuracy when trained with little more than 10% of the training set.

摘要

休伯尔和威塞尔关于视觉皮层(VC)低区域的研究启发了用于不变模式识别的深度模型。在这些模型中,简单和复杂层交替进行局部特征提取和下采样,以增加对失真或变换的不变性。然而,已经表明,为了容忍同一类别的示例之间的较大变化,下采样操作必须丢弃如此多的信息,以至于模型失去了区分类别的能力。因此,在实践中,这些层容忍小的变化,然后引入强大的分类器来完成其余的工作。通过整合 VC 较高区域的见解,我们在已经使用的视网膜拓扑步骤中添加了一个以对象为中心的步骤,该步骤在不丢失太多信息的情况下增加了不变性能力。通过这样做,我们减少了对强大、数据密集型分类层的需求,从而能够引入基于选择性注意的简单分类机制。所得到的模型在 MNIST 和 ETL-1 数据集上进行了不变模式识别任务的测试。我们验证了该模型能够用较少的训练示例实现更好的准确性。更具体地说,在 MNIST 测试集上,当使用不到 10%的训练集进行训练时,该模型的准确率达到 100%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验