Suppr超能文献

基于视觉机制和监督突触学习的尖峰神经网络模式识别。

Pattern Recognition of Spiking Neural Networks Based on Visual Mechanism and Supervised Synaptic Learning.

机构信息

College of Automation, Chongqing University, Chongqing 400044, China.

出版信息

Neural Plast. 2020 Oct 27;2020:8851351. doi: 10.1155/2020/8851351. eCollection 2020.

Abstract

Electrophysiological studies have shown that mammalian primary visual cortex are selective for the orientations of visual stimuli. Inspired by this mechanism, we propose a hierarchical spiking neural network (SNN) for image classification. Grayscale input images are fed through a feed-forward network consisting of orientation-selective neurons, which then projected to a layer of downstream classifier neurons through the spiking-based supervised tempotron learning rule. Based on the orientation-selective mechanism of the visual cortex and tempotron learning rule, the network can effectively classify images of the extensively studied MNIST database of handwritten digits, which achieves 96% classification accuracy based on only 2000 training samples (traditional training set is 60000). Compared with other classification methods, our model not only guarantees the biological plausibility and the accuracy of image classification but also significantly reduces the needed training samples. Considering the fact that the most commonly used deep learning neural networks need big data samples and high power consumption in image recognition, this brain-inspired computational neural network model based on the layer-by-layer hierarchical image processing mechanism of the visual cortex may provide a basis for the wide application of spiking neural networks in the field of intelligent computing.

摘要

电生理研究表明,哺乳动物的初级视觉皮层对视觉刺激的方向具有选择性。受此机制启发,我们提出了一种用于图像分类的分层尖峰神经网络(SNN)。灰度输入图像通过由方向选择性神经元组成的前馈网络进行传递,然后通过基于尖峰的监督 tempotron 学习规则将其投影到下游分类器神经元层。基于视觉皮层的方向选择性机制和 tempotron 学习规则,该网络可以有效地对手写数字的广泛研究的 MNIST 数据库的图像进行分类,仅基于 2000 个训练样本就可实现 96%的分类准确率(传统训练集为 60000 个)。与其他分类方法相比,我们的模型不仅保证了图像分类的生物合理性和准确性,而且还显著减少了所需的训练样本。考虑到最常用的深度学习神经网络在图像识别中需要大数据样本和高功耗这一事实,基于视觉皮层逐层分层图像处理机制的这种受大脑启发的计算神经网络模型可能为尖峰神经网络在智能计算领域的广泛应用提供基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验