Suppr超能文献

使用入院特征、损伤严重度特征和伤后第一天的生理监测评估严重创伤性脑损伤患者的 6 个月 Glasgow 结局量表预后。

Prognosis of Six-Month Glasgow Outcome Scale in Severe Traumatic Brain Injury Using Hospital Admission Characteristics, Injury Severity Characteristics, and Physiological Monitoring during the First Day Post-Injury.

机构信息

1Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas.

2Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston School of Public Health, Houston, Texas.

出版信息

J Neurotrauma. 2019 Aug 15;36(16):2417-2422. doi: 10.1089/neu.2018.6217. Epub 2019 Apr 23.

Abstract

Gold standard prognostic models for long-term outcome in patients with severe traumatic brain injury (TBI) use admission characteristics and are considered useful in some areas but not for clinical practice. In this study, we aimed to build prognostic models for 6-month Glasgow Outcome Score (GOS) in patients with severe TBI, combining baseline characteristics with physiological, treatment, and injury severity data collected during the first 24 h after injury. We used a training dataset of 472 TBI subjects and several data mining algorithms to predict the long-term neurological outcome. Performance of these algorithms was assessed in an independent (test) sample of 158 subjects. The least absolute shrinkage and selection operator (LASSO) led to the highest prediction accuracy (area under the receiving operating characteristic curve = 0.86) in the test set. The most important post-baseline predictor of GOS was the best motor Glasgow Coma Scale (GCS) recorded in the first day post-injury. The LASSO model containing the best motor GCS and baseline variables as predictors outperformed a model with baseline data only. TBI patient physiology of the first day-post-injury did not have a major contribution to patient prognosis six months after injury. In conclusion, 6-month GOS in patients with TBI can be predicted with good accuracy by the end of the first day post-injury, using hospital admission data and information on the best motor GCS achieved during those first 24 h post-injury. Passed the first day after injury, important physiological predictors could emerge from landmark analyses, leading to prediction models of higher accuracy than the one proposed in the current research.

摘要

用于预测严重创伤性脑损伤(TBI)患者长期预后的金标准预后模型使用入院特征,在某些领域被认为是有用的,但不适合临床实践。在这项研究中,我们旨在建立严重 TBI 患者 6 个月格拉斯哥预后评分(GOS)的预后模型,将基线特征与受伤后 24 小时内收集的生理、治疗和损伤严重程度数据相结合。我们使用了 472 名 TBI 患者的训练数据集和几种数据挖掘算法来预测长期神经预后。在 158 名独立(测试)样本中评估了这些算法的性能。最小绝对值收缩和选择算子(LASSO)在测试集中产生了最高的预测准确性(接受者操作特征曲线下面积= 0.86)。GOS 的最佳预测因素是受伤后第一天记录的最佳运动格拉斯哥昏迷量表(GCS)。包含最佳运动 GCS 和基线变量作为预测因子的 LASSO 模型优于仅包含基线数据的模型。TBI 患者受伤后第一天的生理状况对受伤后六个月的患者预后没有重大影响。总之,使用入院数据和受伤后前 24 小时内获得的最佳运动 GCS 信息,可以在受伤后第一天结束时,以较高的准确性预测 TBI 患者 6 个月的 GOS。受伤后第一天过后,重要的生理预测因素可能会从里程碑分析中出现,从而导致预测模型的准确性高于本研究提出的模型。

相似文献

2
Prognosis of Severe Traumatic Brain Injury Outcomes in Children.儿童重度创伤性脑损伤的预后
Acta Neurochir Suppl. 2018;126:11-16. doi: 10.1007/978-3-319-65798-1_3.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验