文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肾髓质癌依赖于这种丢失,并对蛋白酶体抑制敏感。

Renal medullary carcinomas depend upon loss and are sensitive to proteasome inhibition.

机构信息

Boston Children's Hospital, Boston, United States.

Dana-Farber Cancer Institute, Boston, United States.

出版信息

Elife. 2019 Mar 12;8:e44161. doi: 10.7554/eLife.44161.


DOI:10.7554/eLife.44161
PMID:30860482
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6436895/
Abstract

Renal medullary carcinoma (RMC) is a rare and deadly kidney cancer in patients of African descent with sickle cell trait. We have developed faithful patient-derived RMC models and using whole-genome sequencing, we identified loss-of-function intronic fusion events in one allele with concurrent loss of the other allele. Biochemical and functional characterization of these models revealed that RMC requires the loss of for survival. Through integration of RNAi and CRISPR-Cas9 loss-of-function genetic screens and a small-molecule screen, we found that the ubiquitin-proteasome system (UPS) was essential in RMC. Inhibition of the UPS caused a G2/M arrest due to constitutive accumulation of cyclin B1. These observations extend across cancers that harbor loss, which also require expression of the E2 ubiquitin-conjugating enzyme, . Our studies identify a synthetic lethal relationship between -deficient cancers and reliance on the UPS which provides the foundation for a mechanism-informed clinical trial with proteasome inhibitors.

摘要

肾髓质癌(RMC)是一种罕见且致命的肾癌,发生于携带镰状细胞特征的非洲裔患者中。我们已经开发了忠实的患者衍生的 RMC 模型,通过全基因组测序,我们在一个等位基因中发现了功能丧失的内含子融合事件,同时另一个等位基因缺失。这些模型的生化和功能特征表明,RMC 的存活需要 的缺失。通过 RNAi 和 CRISPR-Cas9 功能丧失遗传筛选和小分子筛选的整合,我们发现泛素-蛋白酶体系统(UPS)在 RMC 中是必需的。UPS 的抑制会导致 cyclin B1 的持续积累,从而导致 G2/M 期阻滞。这些观察结果扩展到了携带 缺失的癌症,这些癌症也需要 E2 泛素连接酶的表达 。我们的研究确定了 -缺陷型癌症与依赖 UPS 之间的合成致死关系,这为使用蛋白酶体抑制剂进行基于机制的临床试验提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/a90e71207093/elife-44161-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/2d786d3c3b78/elife-44161-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/7877400b4f91/elife-44161-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/12ff20fb364c/elife-44161-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/08be7f3584e3/elife-44161-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/fc7f5ad6536e/elife-44161-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/4d83c2a2ce18/elife-44161-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/90aa4137a942/elife-44161-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/bc69930edda9/elife-44161-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/6146b46419e3/elife-44161-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/bf982ea9679e/elife-44161-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/437a85dfb678/elife-44161-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/a90e71207093/elife-44161-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/2d786d3c3b78/elife-44161-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/7877400b4f91/elife-44161-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/12ff20fb364c/elife-44161-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/08be7f3584e3/elife-44161-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/fc7f5ad6536e/elife-44161-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/4d83c2a2ce18/elife-44161-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/90aa4137a942/elife-44161-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/bc69930edda9/elife-44161-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/6146b46419e3/elife-44161-fig4-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/bf982ea9679e/elife-44161-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/437a85dfb678/elife-44161-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f900/6436895/a90e71207093/elife-44161-fig5-figsupp2.jpg

相似文献

[1]
Renal medullary carcinomas depend upon loss and are sensitive to proteasome inhibition.

Elife. 2019-3-12

[2]
Genomic Characterization of Renal Medullary Carcinoma and Treatment Outcomes.

Clin Genitourin Cancer. 2017-12

[3]
Novel renal medullary carcinoma cell lines, UOK353 and UOK360, provide preclinical tools to identify new therapeutic treatments.

Genes Chromosomes Cancer. 2020-8

[4]
Balanced Translocations Disrupting SMARCB1 Are Hallmark Recurrent Genetic Alterations in Renal Medullary Carcinomas.

Eur Urol. 2015-10-1

[5]
Haplotype-resolved germline and somatic alterations in renal medullary carcinomas.

Genome Med. 2021-7-14

[6]
SMARCB1/INI1 inactivation in renal medullary carcinoma.

Histopathology. 2012-6-11

[7]
Distinctive mechanisms underlie the loss of SMARCB1 protein expression in renal medullary carcinoma: morphologic and molecular analysis of 20 cases.

Mod Pathol. 2019-4-12

[8]
A Model Linking Sickle Cell Hemoglobinopathies and SMARCB1 Loss in Renal Medullary Carcinoma.

Clin Cancer Res. 2018-2-12

[9]
SMARCB1 regulates a TFCP2L1-MYC transcriptional switch promoting renal medullary carcinoma transformation and ferroptosis resistance.

Nat Commun. 2023-5-26

[10]
SMARCB1 regulates the hypoxic stress response in sickle cell trait.

Proc Natl Acad Sci U S A. 2023-5-23

引用本文的文献

[1]
SMARCB1/INI1-deficient lung cancer with lymph node metastasis: a case report and literature review.

AME Case Rep. 2025-6-19

[2]
Recent progress in non-clear cell renal cell carcinoma: biology and therapeutic strategies.

Ther Adv Med Oncol. 2025-6-16

[3]
missense mutants disrupt SWI/SNF complex stability and remodeling activity.

Res Sq. 2025-3-26

[4]
Differentiating between renal medullary and clear cell renal carcinoma with a machine learning radiomics approach.

Oncologist. 2025-2-6

[5]
A novel case of glial transdifferentiation in renal medullary carcinoma brain metastasis.

Acta Neuropathol Commun. 2025-1-20

[6]
The present and future of the Cancer Dependency Map.

Nat Rev Cancer. 2025-1

[7]
Chromatin remodellers as therapeutic targets.

Nat Rev Drug Discov. 2024-9

[8]
Targeting TRIP13 in favorable histology Wilms tumor with nuclear export inhibitors synergizes with doxorubicin.

Commun Biol. 2024-4-8

[9]
Targeting DCAF5 suppresses SMARCB1-mutant cancer by stabilizing SWI/SNF.

Nature. 2024-4

[10]
Children's Oncology Group's 2023 blueprint for research: Renal tumors.

Pediatr Blood Cancer. 2023-9

本文引用的文献

[1]
SvABA: genome-wide detection of structural variants and indels by local assembly.

Genome Res. 2018-3-13

[2]
Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours.

Nature. 2018-2-28

[3]
The landscape of genomic alterations across childhood cancers.

Nature. 2018-2-28

[4]
Preclinical evaluation of antitumor activity of the proteasome inhibitor MLN2238 (ixazomib) in hepatocellular carcinoma cells.

Cell Death Dis. 2018-1-18

[5]
Targeting Polo-like kinase 1 in SMARCB1 deleted atypical teratoid rhabdoid tumor.

Oncotarget. 2017-10-19

[6]
Synthetic Lethal Vulnerabilities in -Mutant Cancers.

Cold Spring Harb Perspect Med. 2018-8-1

[7]
Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells.

Nat Genet. 2017-12

[8]
SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters.

Nat Genet. 2017-11

[9]
Cancer-Specific Retargeting of BAF Complexes by a Prion-like Domain.

Cell. 2017-9-21

[10]
Renal Medullary Carcinoma: Establishing Standards in Practice.

J Oncol Pract. 2017-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索