Laboratory for Applied Geomatics and GIS Science (LAGGISS), Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, Canada.
l'École nationale des sciences géographiques (ENSG-Géomatique), Paris, Champs-sur-Marne, France.
PLoS One. 2019 Mar 13;14(3):e0212814. doi: 10.1371/journal.pone.0212814. eCollection 2019.
Gentrification is multidimensional and complex, but there is general agreement that visible changes to neighbourhoods are a clear manifestation of the process. Recent advances in computer vision and deep learning provide a unique opportunity to support automated mapping or 'deep mapping' of perceptual environmental attributes. We present a Siamese convolutional neural network (SCNN) that automatically detects gentrification-like visual changes in temporal sequences of Google Street View (GSV) images. Our SCNN achieves 95.6% test accuracy and is subsequently applied to GSV sequences at 86110 individual properties over a 9-year period in Ottawa, Canada. We use Kernel Density Estimation (KDE) to produce maps that illustrate where the spatial concentration of visual property improvements was highest within the study area at different times from 2007-2016. We find strong concordance between the mapped SCNN results and the spatial distribution of building permits in the City of Ottawa from 2011 to 2016. Our mapped results confirm those urban areas that are known to be undergoing gentrification as well as revealing areas undergoing gentrification that were previously unknown. Our approach differs from previous works because we examine the atomic unit of gentrification, namely, the individual property, for visual property improvements over time and we rely on KDE to describe regions of high spatial intensity that are indicative of gentrification processes.
城市更新是多维度且复杂的,但人们普遍认为,社区的可见变化是这一过程的明显表现。计算机视觉和深度学习的最新进展为自动绘制或“深度绘制”感知环境属性提供了独特的机会。我们提出了一种孪生卷积神经网络(SCNN),它可以自动检测 Google 街景(GSV)图像时间序列中的类似城市更新的视觉变化。我们的 SCNN 在加拿大渥太华的 9 年时间里,对 86110 个独立物业的 GSV 序列进行了测试,准确率达到 95.6%。我们使用核密度估计(KDE)生成地图,以说明在不同时间内,研究区域内视觉属性改善的空间集中程度最高的位置。我们发现,SCNN 映射结果与渥太华市 2011 年至 2016 年的建筑许可证的空间分布之间具有很强的一致性。我们的映射结果证实了那些已知正在经历城市更新的城区,以及揭示了以前未知的正在经历城市更新的城区。我们的方法与以前的工作不同,因为我们随着时间的推移检查单个物业的原子单元的视觉属性改善情况,并且依靠 KDE 来描述高空间强度的区域,这些区域是城市更新过程的指标。