Suppr超能文献

具有自我调节功能的线粒体引擎,通过生物能量强大的水凝胶设计来恢复退变的椎间盘细胞。

Mitochondria-engine with self-regulation to restore degenerated intervertebral disc cells via bioenergetic robust hydrogel design.

作者信息

Wang Juehan, Jiang Yulin, Zhu Ce, Liu Zheng, Qi Lin, Ding Hong, Wang Jing, Huang Yong, Li Yubao, Song Yueming, Feng Ganjun, Zhang Li, Liu Limin

机构信息

Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China.

出版信息

Bioact Mater. 2024 May 31;40:1-18. doi: 10.1016/j.bioactmat.2024.05.044. eCollection 2024 Oct.

Abstract

Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline. Additionally, re-energizing the mitochondria damaged in the inflammatory milieu to restore their function, is equally important. Herein, we proposed an interesting concept of mitochondrion-engine equipped with coolant, which enables first to "cool-down" the inflammatory environment, next to restore the MMP, finally to allow cells to regain normal energy metabolism through materials design. As such, we developed a multi-functional composite composed of a reactive oxygen species (ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane (TPU) scaffold. The TPU scaffold was coated with conductive polypyrrole (PPy) to electrophoretically deposit l-arginine, which could upregulate the Mammalian target of rapamycin () pathway, thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair. While the ROS-responsive hydrogel acting as the "mito-engine coolant" could scavenge the excessive ROS to create a favorable environment for IVD cells recovery. Demonstrated by and evaluations, the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress. Radiological and histological assessments revealed the efficacy of this system in IVD repair. This unique bioinspired design integrated biomaterial science with mitochondrial biology, presents a promising paradigm for IDD treatment.

摘要

先前的研究已经证实,椎间盘退变(IDD)与炎症诱导的活性氧(ROS)以及由此导致的细胞线粒体膜电位(MMP)下降密切相关。在炎症环境中清除ROS对于打破MMP下降的恶性循环至关重要。此外,使在炎症环境中受损的线粒体重新获得能量以恢复其功能同样重要。在此,我们提出了一个有趣的配备冷却剂的线粒体引擎概念,它首先能够“冷却”炎症环境,接着恢复MMP,最后通过材料设计使细胞恢复正常的能量代谢。因此,我们开发了一种多功能复合材料,它由注入刚性3D打印热塑性聚氨酯(TPU)支架中的活性氧(ROS)响应性海藻酸钠/明胶水凝胶组成。TPU支架涂有导电聚吡咯(PPy)以电泳沉积L-精氨酸,这可以上调雷帕霉素哺乳动物靶标(mTOR)途径,从而增加MMP和能量代谢,以刺激细胞外基质合成用于椎间盘修复。而作为“线粒体引擎冷却剂”的ROS响应性水凝胶可以清除过量的ROS,为椎间盘细胞恢复创造有利环境。通过细胞和分子评估表明,线粒体引擎系统在氧化应激下显著促进了髓核细胞的增殖和胶原蛋白合成,同时增强了线粒体呼吸和MMP。放射学和组织学评估揭示了该系统在椎间盘修复中的功效。这种独特的受生物启发的设计将生物材料科学与线粒体生物学相结合,为IDD治疗提供了一个有前景的范例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2654/11167444/112a6bf8aa5e/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验