Suppr超能文献

婴儿期肥胖风险的前瞻性评估(ProAsk):关于父母和专业人员对移动健康干预措施看法的定性研究

Proactive Assessment of Obesity Risk during Infancy (ProAsk): a qualitative study of parents' and professionals' perspectives on an mHealth intervention.

作者信息

Rose Jennie, Glazebrook Cris, Wharrad Heather, Siriwardena A Niroshan, Swift Judy Anne, Nathan Dilip, Weng Stephen Franklin, Atkinson Pippa, Ablewhite Joanne, McMaster Fiona, Watson Vicki, Redsell Sarah Anne

机构信息

Faculty of Health, Education, Medicine and Social Care, Anglia Ruskin University, East Road Campus, Cambridge, England.

Institute of Mental Health, University of Nottingham Innovation Park, Nottingham, England.

出版信息

BMC Public Health. 2019 Mar 12;19(1):294. doi: 10.1186/s12889-019-6616-5.

Abstract

BACKGROUND

Prevention of childhood obesity is a public health priority. Interventions that establish healthy growth trajectories early in life promise lifelong benefits to health and wellbeing. Proactive Assessment of Obesity Risk during Infancy (ProAsk) is a novel mHealth intervention designed to enable health professionals to assess an infant's risk of future overweight and motivate parental behaviour change to prevent childhood overweight and obesity. The aim of this study was to explore parents' and health professionals' experiences of the overweight risk communication and behaviour change aspects of this mHealth intervention.

METHODS

The study was conducted in four economically deprived localities in the UK. Parents (N = 66) were recruited to the ProAsk feasibility study when their infant was 6-8 weeks old. Twenty two health visitors (HVs) used a hand-held tablet device to deliver ProAsk to parents when their infants were 3 months old. Parents (N = 12) and HVs (N = 15) were interviewed when infants in the study were 6 months old. Interview data were transcribed and analysed thematically using an inductive, interpretative approach.

RESULTS

Four key themes were identified across both parent and health visitor data: Engaging and empowering with digital technology; Unfamiliar technology presents challenges and opportunity; Trust in the risk score; Resistance to targeting. Most participants found the interactivity and visual presentation of information on ProAsk engaging. Health visitors who were unfamiliar with mobile technology drew support from parents who were more confident using tablet devices. There was evidence of resistance to targeting infants at greatest risk of future overweight and obesity, and both parents and health visitors drew on a number of reasons why a higher than average overweight risk score might not apply to a particular infant.

CONCLUSIONS

An mHealth intervention actively engaged parents, enabling them to take ownership of the process of seeking strategies to reduce infant risk of overweight. However, cognitive and motivational biases that prevent effective overweight risk communication are barriers to targeting an intervention at those infants most at risk.

TRIAL REGISTRATION

NCT02314494 . Date registered 11th December 2014.

摘要

背景

预防儿童肥胖是公共卫生的重点。在生命早期建立健康生长轨迹的干预措施有望为健康和幸福带来终身益处。婴儿期肥胖风险的主动评估(ProAsk)是一种新型移动健康干预措施,旨在使健康专业人员能够评估婴儿未来超重的风险,并促使父母改变行为,以预防儿童超重和肥胖。本研究的目的是探讨父母和健康专业人员对这种移动健康干预措施中超重风险沟通和行为改变方面的体验。

方法

该研究在英国四个经济贫困地区进行。当婴儿6 - 8周大时,招募父母(N = 66)参与ProAsk可行性研究。22名健康访视员在婴儿3个月大时,使用手持平板电脑设备向父母提供ProAsk。当研究中的婴儿6个月大时,对12名父母和15名健康访视员进行了访谈。访谈数据进行了转录,并采用归纳、解释性方法进行主题分析。

结果

在父母和健康访视员的数据中确定了四个关键主题:参与并借助数字技术获得力量;不熟悉的技术带来挑战和机遇;对风险评分的信任;对针对性的抵触。大多数参与者认为ProAsk上信息的交互性和可视化呈现很有吸引力。不熟悉移动技术的健康访视员从使用平板电脑设备更自信的父母那里获得了支持。有证据表明,对于将目标对准未来超重和肥胖风险最高的婴儿存在抵触情绪,父母和健康访视员都列举了一些原因,说明高于平均水平的超重风险评分可能不适用于某个特定婴儿。

结论

一种移动健康干预措施积极地让父母参与进来,使他们能够自主寻求降低婴儿超重风险的策略。然而,妨碍有效超重风险沟通的认知和动机偏差是针对风险最高的婴儿进行干预的障碍。

试验注册

NCT02314494。注册日期:2014年12月11日。

相似文献

引用本文的文献

1
Consumer Health Informatics to Advance Precision Prevention.促进精准预防的消费者健康信息学
Yearb Med Inform. 2024 Aug;33(1):149-157. doi: 10.1055/s-0044-1800735. Epub 2025 Apr 8.
7
A prediction model for childhood obesity in New Zealand.新西兰儿童肥胖预测模型。
Sci Rep. 2021 Mar 18;11(1):6380. doi: 10.1038/s41598-021-85557-z.

本文引用的文献

10
Risk prediction tools for cancer in primary care.基层医疗中癌症的风险预测工具。
Br J Cancer. 2015 Dec 22;113(12):1645-50. doi: 10.1038/bjc.2015.409. Epub 2015 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验