Center for Complex Networks and Systems Research, School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, USA.
Center for Security and Privacy in Informatics, Computing, and Engineering, School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, USA.
Sci Rep. 2019 Mar 13;9(1):4358. doi: 10.1038/s41598-019-40137-0.
We propose a method for detecting large events based on the structure of temporal communication networks. Our method is motivated by findings that viral information spreading has distinct diffusion patterns with respect to community structure. Namely, we hypothesize that global events trigger viral information cascades that easily cross community boundaries and can thus be detected by monitoring intra- and inter-community communications. By comparing the amount of communication within and across communities, we show that it is possible to detect events, even when they do not trigger a significantly larger communication volume. We demonstrate the effectiveness of our method using two examples-the email communication network of Enron and the Twitter communication network during the Boston Marathon bombing.
我们提出了一种基于时间通讯网络结构的大事件检测方法。我们的方法是基于以下发现:病毒信息传播具有特定的社区结构扩散模式。也就是说,我们假设全球性事件会引发病毒信息级联,这些信息很容易跨越社区边界,因此可以通过监测社区内和社区间的通讯来检测到。通过比较社区内和社区间的通讯量,我们表明即使事件没有引发明显更大的通讯量,也有可能检测到事件。我们使用两个例子——安然公司的电子邮件通讯网络和波士顿马拉松爆炸期间的 Twitter 通讯网络——验证了我们方法的有效性。