Suppr超能文献

基于社区的时态网络中的事件检测。

Community-Based Event Detection in Temporal Networks.

机构信息

Center for Complex Networks and Systems Research, School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, USA.

Center for Security and Privacy in Informatics, Computing, and Engineering, School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, 47408, USA.

出版信息

Sci Rep. 2019 Mar 13;9(1):4358. doi: 10.1038/s41598-019-40137-0.

Abstract

We propose a method for detecting large events based on the structure of temporal communication networks. Our method is motivated by findings that viral information spreading has distinct diffusion patterns with respect to community structure. Namely, we hypothesize that global events trigger viral information cascades that easily cross community boundaries and can thus be detected by monitoring intra- and inter-community communications. By comparing the amount of communication within and across communities, we show that it is possible to detect events, even when they do not trigger a significantly larger communication volume. We demonstrate the effectiveness of our method using two examples-the email communication network of Enron and the Twitter communication network during the Boston Marathon bombing.

摘要

我们提出了一种基于时间通讯网络结构的大事件检测方法。我们的方法是基于以下发现:病毒信息传播具有特定的社区结构扩散模式。也就是说,我们假设全球性事件会引发病毒信息级联,这些信息很容易跨越社区边界,因此可以通过监测社区内和社区间的通讯来检测到。通过比较社区内和社区间的通讯量,我们表明即使事件没有引发明显更大的通讯量,也有可能检测到事件。我们使用两个例子——安然公司的电子邮件通讯网络和波士顿马拉松爆炸期间的 Twitter 通讯网络——验证了我们方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26b0/6416296/031d72cab8df/41598_2019_40137_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验