Suppr超能文献

在保留群落结构的同时提高复杂网络的鲁棒性。

Improving the robustness of complex networks with preserving community structure.

作者信息

Yang Yang, Li Zhoujun, Chen Yan, Zhang Xiaoming, Wang Senzhang

机构信息

School of Computer Science and Engineering, Beihang University, Beijing, China.

出版信息

PLoS One. 2015 Feb 12;10(2):e0116551. doi: 10.1371/journal.pone.0116551. eCollection 2015.

Abstract

Complex networks are everywhere, such as the power grid network, the airline network, the protein-protein interaction network, and the road network. The networks are 'robust yet fragile', which means that the networks are robust against random failures but fragile under malicious attacks. The cascading failures, system-wide disasters and intentional attacks on these networks are deserving of in-depth study. Researchers have proposed many solutions to improve the robustness of these networks. However whilst many solutions preserve the degree distribution of the networks, little attention is paid to the community structure of these networks. We argue that the community structure of a network is a defining characteristic of a network which identifies its functionality and thus should be preserved. In this paper, we discuss the relationship between robustness and the community structure. Then we propose a 3-step strategy to improve the robustness of a network, while retaining its community structure, and also its degree distribution. With extensive experimentation on representative real-world networks, we demonstrate that our method is effective and can greatly improve the robustness of networks, while preserving community structure and degree distribution. Finally, we give a description of a robust network, which is useful not only for improving robustness, but also for designing robust networks and integrating networks.

摘要

复杂网络无处不在,如电网网络、航空网络、蛋白质-蛋白质相互作用网络和道路网络。这些网络“强健却脆弱”,这意味着它们对随机故障具有鲁棒性,但在恶意攻击下却很脆弱。对这些网络的级联故障、系统范围的灾难和蓄意攻击值得深入研究。研究人员已经提出了许多提高这些网络鲁棒性的解决方案。然而,虽然许多解决方案保留了网络的度分布,但很少有人关注这些网络的社区结构。我们认为,网络的社区结构是网络的一个决定性特征,它确定了网络的功能,因此应该保留。在本文中,我们讨论了鲁棒性与社区结构之间的关系。然后,我们提出了一种三步策略来提高网络的鲁棒性,同时保留其社区结构及其度分布。通过对具有代表性的真实世界网络进行广泛的实验,我们证明了我们的方法是有效的,并且可以在保留社区结构和度分布的同时,极大地提高网络的鲁棒性。最后,我们描述了一个鲁棒网络,它不仅有助于提高鲁棒性,而且有助于设计鲁棒网络和集成网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/111e/4326464/0e901ae562ec/pone.0116551.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验