Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
Centre for Human and Applied Physiological Sciences, King's College London, London, United Kingdom; and.
FASEB J. 2019 Jun;33(6):7563-7577. doi: 10.1096/fj.201900067R. Epub 2019 Mar 14.
Dietary inorganic nitrate prevents aspects of cardiac mitochondrial dysfunction induced by hypoxia, although the mechanism is not completely understood. In both heart and skeletal muscle, nitrate increases fatty acid oxidation capacity, and in the latter case, this involves up-regulation of peroxisome proliferator-activated receptor (PPAR)α expression. Here, we investigated whether dietary nitrate modifies mitochondrial function in the hypoxic heart in a PPARα-dependent manner. Wild-type (WT) mice and mice without PPARα () were given water containing 0.7 mM NaCl (control) or 0.7 mM NaNO for 35 d. After 7 d, mice were exposed to normoxia or hypoxia (10% O) for the remainder of the study. Mitochondrial respiratory function and metabolism were assessed in saponin-permeabilized cardiac muscle fibers. Environmental hypoxia suppressed mass-specific mitochondrial respiration and additionally lowered the proportion of respiration supported by fatty acid oxidation by 18% ( < 0.001). This switch away from fatty acid oxidation was reversed by nitrate treatment in hypoxic WT but not mice, indicating a PPARα-dependent effect. Hypoxia increased hexokinase activity by 33% in all mice, whereas lactate dehydrogenase activity increased by 71% in hypoxic WT but not mice. Our findings indicate that PPARα plays a key role in mediating cardiac metabolic remodeling in response to both hypoxia and dietary nitrate supplementation.-Horscroft, J. A., O'Brien, K. A., Clark, A. D., Lindsay, R. T., Steel, A. S., Procter, N. E. K., Devaux, J., Frenneaux, M., Harridge, S. D. R., Murray, A. J. Inorganic nitrate, hypoxia, and the regulation of cardiac mitochondrial respiration-probing the role of PPARα.
饮食中的无机硝酸盐可预防缺氧引起的心脏线粒体功能障碍,但机制尚不完全清楚。在心脏和骨骼肌中,硝酸盐均可增加脂肪酸氧化能力,在后一种情况下,这涉及过氧化物酶体增殖物激活受体 (PPAR)α 表达的上调。在这里,我们研究了饮食中的硝酸盐是否以依赖于 PPARα 的方式改变缺氧心脏中的线粒体功能。给予野生型 (WT) 小鼠和缺乏 PPARα 的小鼠含 0.7 mM NaCl (对照) 或 0.7 mM NaNO 的水 35 天。7 天后,将小鼠暴露于常氧或缺氧 (10% O) 中进行研究的其余部分。在皂素通透的心肌纤维中评估线粒体呼吸功能和代谢。环境缺氧抑制了比质量特异性线粒体呼吸,并额外降低了脂肪酸氧化支持的呼吸比例 18%(<0.001)。这种从脂肪酸氧化的转变在缺氧 WT 小鼠中被硝酸盐处理逆转,但在缺乏 PPARα 的 小鼠中没有,表明这是一种依赖于 PPARα 的效应。缺氧使所有小鼠的己糖激酶活性增加了 33%,而乳酸脱氢酶活性在缺氧 WT 小鼠中增加了 71%,但在缺乏 PPARα 的 小鼠中没有增加。我们的研究结果表明,PPARα 在介导心脏代谢重编程方面发挥关键作用,以应对缺氧和饮食硝酸盐补充。-Horscroft, J. A., O'Brien, K. A., Clark, A. D., Lindsay, R. T., Steel, A. S., Procter, N. E. K., Devaux, J., Frenneaux, M., Harridge, S. D. R., Murray, A. J. 无机硝酸盐、缺氧和心脏线粒体呼吸调节-探究 PPARα 的作用。