Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, 100069, China.
Core Facility Centre, Capital Medical University, Beijing, 100069, China.
Acta Pharmacol Sin. 2023 Nov;44(11):2184-2200. doi: 10.1038/s41401-023-01107-5. Epub 2023 Jun 16.
Clinically, cardiac dysfunction is a key component of sepsis-induced multi-organ failure. Mitochondria are essential for cardiomyocyte homeostasis, as disruption of mitochondrial dynamics enhances mitophagy and apoptosis. However, therapies targeted to improve mitochondrial function in septic patients have not been explored. Transcriptomic data analysis revealed that the peroxisome proliferator-activated receptor (PPAR) signaling pathway in the heart was the most significantly decreased in the cecal ligation puncture-treated mouse heart model, and PPARα was the most notably decreased among the three PPAR family members. Male Ppara (wild-type), cardiomyocyte-specific Ppara-deficient (Ppara), and myeloid-specific Ppara-deficient (Ppara) mice were injected intraperitoneally with lipopolysaccharide (LPS) to induce endotoxic cardiac dysfunction. PPARα signaling was decreased in LPS-treated wild-type mouse hearts. To determine the cell type in which PPARα signaling was suppressed, the cell type-specific Ppara-null mice were examined. Cardiomyocyte- but not myeloid-specific Ppara deficiency resulted in exacerbated LPS-induced cardiac dysfunction. Ppara disruption in cardiomyocytes augmented mitochondrial dysfunction, as revealed by damaged mitochondria, lowered ATP contents, decreased mitochondrial complex activities, and increased DRP1/MFN1 protein levels. RNA sequencing results further showed that cardiomyocyte Ppara deficiency potentiated the impairment of fatty acid metabolism in LPS-treated heart tissue. Disruption of mitochondrial dynamics resulted in increased mitophagy and mitochondrial-dependent apoptosis in Ppara mice. Moreover, mitochondrial dysfunction caused an increase of reactive oxygen species, leading to increased IL-6/STAT3/NF-κB signaling. 3-Methyladenine (3-MA, an autophagosome formation inhibitor) alleviated cardiomyocyte Ppara disruption-induced mitochondrial dysfunction and cardiomyopathy. Finally, pre-treatment with the PPARα agonist WY14643 lowered mitochondrial dysfunction-induced cardiomyopathy in hearts from LPS-treated mice. Thus, cardiomyocyte but not myeloid PPARα protects against septic cardiomyopathy by improving fatty acid metabolism and mitochondrial dysfunction, thus highlighting that cardiomyocyte PPARα may be a therapeutic target for the treatment of cardiac disease.
临床上,心功能障碍是脓毒症引起多器官衰竭的关键组成部分。线粒体对于心肌细胞稳态至关重要,因为线粒体动力学的破坏会增强自噬和细胞凋亡。然而,针对改善脓毒症患者线粒体功能的治疗方法尚未得到探索。转录组数据分析显示,在盲肠结扎穿刺处理的小鼠心脏模型中,心脏中的过氧化物酶体增殖物激活受体 (PPAR) 信号通路下降最为显著,而在三个 PPAR 家族成员中,PPARα下降最为明显。雄性 Ppara(野生型)、心肌细胞特异性 Ppara 缺陷型(Ppara)和髓系特异性 Ppara 缺陷型(Ppara)小鼠通过腹腔内注射脂多糖(LPS)诱导内毒素性心功能障碍。PPARα 信号在 LPS 处理的野生型小鼠心脏中降低。为了确定抑制 PPARα 信号的细胞类型,检查了细胞类型特异性 Ppara 缺失型小鼠。心肌细胞而非髓系特异性 Ppara 缺失导致 LPS 诱导的心脏功能障碍加剧。心肌细胞中 Ppara 的破坏增强了线粒体功能障碍,表现为受损的线粒体、降低的 ATP 含量、降低的线粒体复合物活性和增加的 DRP1/MFN1 蛋白水平。RNA 测序结果进一步表明,心肌细胞 Ppara 缺失增强了 LPS 处理的心脏组织中脂肪酸代谢的损伤。线粒体动力学的破坏导致 Ppara 小鼠中的自噬和线粒体依赖性细胞凋亡增加。此外,线粒体功能障碍导致活性氧增加,导致 IL-6/STAT3/NF-κB 信号增加。3-甲基腺嘌呤(3-MA,自噬体形成抑制剂)缓解了心肌细胞 Ppara 破坏诱导的线粒体功能障碍和心肌病。最后,PPARα 激动剂 WY14643 的预处理降低了 LPS 处理的小鼠心脏中由线粒体功能障碍引起的心肌病。因此,心肌细胞而非髓系 PPARα 通过改善脂肪酸代谢和线粒体功能障碍来保护免受脓毒症性心肌病,这突出表明心肌细胞 PPARα 可能是治疗心脏疾病的治疗靶点。