Suppr超能文献

预测科学家的引文计数作为链接预测问题。

Predicting Citation Count of Scientists as a Link Prediction Problem.

出版信息

IEEE Trans Cybern. 2020 Oct;50(10):4518-4529. doi: 10.1109/TCYB.2019.2900495. Epub 2019 Mar 12.

Abstract

The studies dealing with the problem of predicting scientific impacts in the scientific world mostly focus on predicting citation count of papers (PCCP). However, in the literature, only a little bit of research has been conducted on estimating the future influence of scientists individually. Estimating the impact of scientists individually is a worthwhile task for the following scientific research and cooperatives. From this point of view, a new supervised link prediction method is proposed to predict the citation count of scientists (PCCS). Many PCCP studies employ document-based attributes, such as titles, abstracts, and keywords of papers; institutions of scientists; impact factors of publishers; etc. and they do not take advantage of any topological features of complex networks formed with citations among papers. However, citation networks include valuable features for PCCP and PCCS. Therefore, we formulate the problem of PCCS as a link prediction problem in directed, weighted, and temporal citation networks. The proposed approach predicts not only links but also its weights. Our supervised link prediction method is tested on two citation networks in Experiment 1. The results of Experiment 1 confirm that our method achieves promising performances when considering prediction links with its weights are addressed for the first time in terms of link prediction in directed, weighted, and temporal networks. In Experiment 2, the performance of the proposed link prediction metric and five well-known link prediction metrics are compared in terms of prediction new links in complex networks. The results of Experiment 2 demonstrate that the proposed link prediction metric outperforms all baseline link prediction metrics.

摘要

研究科学世界中预测科学影响力的问题主要集中在预测论文的引文计数(PCCP)上。然而,在文献中,只有很少的研究致力于估计科学家个人的未来影响力。对于以下科学研究和合作来说,估计科学家的个人影响力是一项有价值的任务。从这个角度来看,提出了一种新的有监督链接预测方法来预测科学家的引文计数(PCCS)。许多 PCCP 研究采用基于文档的属性,例如论文的标题、摘要和关键词;科学家的机构;出版商的影响因素等;它们没有利用论文之间引文形成的复杂网络的任何拓扑特征。然而,引文网络包含了 PCCP 和 PCCS 的有价值特征。因此,我们将 PCCS 问题表述为有向、加权和时间引用网络中的链接预测问题。在实验 1 中,我们的方法在两个引文网络上进行了测试。实验 1 的结果证实,当首次在有向、加权和时间网络中的链接预测中考虑预测链接及其权重时,我们的方法可以实现有前途的性能。在实验 2 中,我们比较了所提出的链接预测指标和五个著名的链接预测指标在复杂网络中预测新链接的性能。实验 2 的结果表明,所提出的链接预测指标优于所有基准链接预测指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验