Richardson Ian G
1GPHI and Department of Astronomy, University of Maryland, College Park, MD 20742 USA.
2Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA.
Living Rev Sol Phys. 2018;15(1):1. doi: 10.1007/s41116-017-0011-z. Epub 2018 Jan 26.
This paper focuses on the interactions between the fast solar wind from coronal holes and the intervening slower solar wind, leading to the creation of stream interaction regions that corotate with the Sun and may persist for many solar rotations. Stream interaction regions have been observed near 1 AU, in the inner heliosphere (at -1 AU) by the Helios spacecraft, in the outer and distant heliosphere by the Pioneer 10 and 11 and Voyager 1 and 2 spacecraft, and out of the ecliptic by Ulysses, and these observations are reviewed. Stream interaction regions accelerate energetic particles, modulate the intensity of Galactic cosmic rays and generate enhanced geomagnetic activity. The remote detection of interaction regions using interplanetary scintillation and white-light imaging, and MHD modeling of interaction regions will also be discussed.
本文聚焦于日冕洞产生的快速太阳风与中间较慢太阳风之间的相互作用,这种相互作用导致了与太阳共转且可能持续多个太阳自转周期的流相互作用区的形成。在1天文单位附近、内日球层(-1天文单位处),“太阳神”号航天器观测到了流相互作用区;在日球层外部和遥远区域,“先驱者10号”和“先驱者11号”以及“旅行者1号”和“旅行者2号”航天器观测到了流相互作用区;“尤利西斯”号在黄道面外也观测到了流相互作用区,本文对这些观测进行了综述。流相互作用区会加速高能粒子、调制银河宇宙射线的强度并引发增强的地磁活动。还将讨论利用行星际闪烁和白光成像对相互作用区进行的远程探测以及相互作用区的磁流体动力学建模。