Perspectum Diagnostics Ltd, Oxford, United Kingdom.
Magn Reson Med. 2019 Jul;82(1):460-475. doi: 10.1002/mrm.27728. Epub 2019 Mar 15.
To develop a postprocessing algorithm for multiecho chemical-shift encoded water-fat separation that estimates proton density fat fraction (PDFF) maps over the full dynamic range (0-100%) using multipeak fat modeling and multipoint search optimization. To assess its accuracy, reproducibility, and agreement with state-of-the-art complex-based methods, and to evaluate its robustness to artefacts in abdominal PDFF maps.
We introduce MAGO (MAGnitude-Only), a magnitude-based reconstruction that embodies multipeak liver fat spectral modeling and multipoint optimization, and which is compatible with asymmetric echo acquisitions. MAGO is assessed first for accuracy and reproducibility on publicly available phantom data. Then, MAGO is applied to N = 178 UK Biobank cases, in which its liver PDFF measures are compared using Bland-Altman analysis with those from a version of the hybrid iterative decomposition of water and fat with echo asymmetry and least squares estimation (IDEAL) algorithm, LiverMultiScan IDEAL (LMS IDEAL, Perspectum Diagnostics Ltd, Oxford, UK). Finally, MAGO is tested on a succession of high field challenging cases for which LMS IDEAL generated artefacts in the PDFF maps.
Phantom data showed accurate, reproducible MAGO PDFF values across manufacturers, field strengths, and acquisition protocols. Moreover, we report excellent agreement between MAGO and LMS IDEAL for 6-echo, 1.5 tesla human acquisitions (bias = -0.02% PDFF, 95% confidence interval = ±0.13% PDFF). When tested on 12-echo, 3 tesla cases from different manufacturers, MAGO was shown to be more robust to artefacts compared to LMS IDEAL.
MAGO resolves the water-fat ambiguity over the entire fat fraction dynamic range without compromising accuracy, therefore enabling robust PDFF estimation where phase data is inaccessible or unreliable and complex-based and hybrid methods fail.
开发一种多回波化学位移编码水脂分离的后处理算法,该算法使用多峰脂肪建模和多点搜索优化,在全动态范围内(0-100%)估计质子密度脂肪分数(PDFF)图。评估其准确性、可重复性和与基于复杂方法的先进方法的一致性,并评估其对腹部 PDFF 图伪影的稳健性。
我们引入了 MAGO(仅幅度),这是一种基于幅度的重建方法,它体现了多峰肝脏脂肪光谱建模和多点优化,并且与非对称回波采集兼容。首先,在公开的体模数据上评估 MAGO 的准确性和可重复性。然后,将 MAGO 应用于 178 名英国生物银行病例,使用 Bland-Altman 分析比较其肝脏 PDFF 测量值与一种混合迭代分解水和脂肪与回波不对称和最小二乘估计(IDEAL)算法(LiverMultiScan IDEAL(LMS IDEAL,英国牛津 Perspectum Diagnostics Ltd)的版本。最后,在一系列高场挑战性病例上测试 MAGO,对于这些病例,LMS IDEAL 在 PDFF 图中产生了伪影。
体模数据显示,在不同制造商、场强和采集协议下,MAGO 的 PDFF 值准确且可重复。此外,我们报告了在 6 回波、1.5 特斯拉人体采集时 MAGO 和 LMS IDEAL 之间的极好一致性(偏差=0.02% PDFF,95%置信区间=±0.13% PDFF)。当在来自不同制造商的 12 回波、3 特斯拉病例上进行测试时,与 LMS IDEAL 相比,MAGO 显示出对伪影更稳健。
MAGO 解决了整个脂肪分数动态范围内的水脂模糊问题,而不会牺牲准确性,因此在相位数据不可用或不可靠以及基于复杂方法和混合方法失败的情况下,能够实现稳健的 PDFF 估计。