Zaitsev Alexey V, Torres Natalia S, Cawley Keiko M, Sabry Amira D, Warren Junco S, Warren Mark
Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah.
Department of Bioengineering, University of Utah , Salt Lake City, Utah.
Am J Physiol Heart Circ Physiol. 2019 Jun 1;316(6):H1507-H1527. doi: 10.1152/ajpheart.00660.2018. Epub 2019 Mar 15.
The "stress" kinases cAMP-dependent protein kinase (PKA) and calcium/calmodulin-dependent protein kinase II (CaMKII), phosphorylate the Na channel Nav1.5 subunit to regulate its function. However, how the channel regulation translates to ventricular conduction is poorly understood. We hypothesized that the stress kinases positively and differentially regulate conduction in the right (RV) and the left (LV) ventricles. We applied the CaMKII blocker KN93 (2.75 μM), PKA blocker H89 (10 μM), and broad-acting phosphatase blocker calyculin (30 nM) in rabbit hearts paced at a cycle length (CL) of 150-8,000 ms. We used optical mapping to determine the distribution of local conduction delays (inverse of conduction velocity). Control hearts exhibited constant and uniform conduction at all tested CLs. Calyculin (15-min perfusion) accelerated conduction, with greater effect in the RV (by 15.3%) than in the LV (by 4.1%; < 0.05). In contrast, both KN93 and H89 slowed down conduction in a chamber-, time-, and CL-dependent manner, with the strongest effect in the RV outflow tract (RVOT). Combined KN93 and H89 synergistically promoted conduction slowing in the RV (KN93: 24.7%; H89: 29.9%; and KN93 + H89: 114.2%; = 0.0016) but not the LV. The progressive depression of RV conduction led to conduction block and reentrant arrhythmias. Protein expression levels of both the CaMKII-δ isoform and the PKA catalytic subunit were higher in the RVOT than in the apical LV ( < 0.05). Thus normal RV conduction requires a proper balance between kinase and phosphatase activity. Dysregulation of this balance due to pharmacological interventions or disease is potentially proarrhythmic. We show that uniform ventricular conduction requires a precise physiological balance of the activities of calcium/calmodulin-dependent protein kinase II (CaMKII), PKA, and phosphatases, which involves region-specific expression of CaMKII and PKA. Inhibiting CaMKII and/or PKA activity elicits nonuniform conduction depression, with the right ventricle becoming vulnerable to the development of conduction disturbances and ventricular fibrillation/ventricular tachycardia.
“应激”激酶环磷酸腺苷依赖性蛋白激酶(PKA)和钙/钙调蛋白依赖性蛋白激酶II(CaMKII)可使钠通道Nav1.5亚基磷酸化,从而调节其功能。然而,通道调节如何转化为心室传导,目前尚不清楚。我们推测,应激激酶对右心室(RV)和左心室(LV)的传导具有正向且不同的调节作用。我们在周期长度(CL)为150 - 8000毫秒起搏的兔心脏中应用了CaMKII阻滞剂KN93(2.75 μM)、PKA阻滞剂H89(10 μM)和广谱磷酸酶阻滞剂花萼海绵诱癌素(30 nM)。我们使用光学标测来确定局部传导延迟(传导速度的倒数)的分布。对照心脏在所有测试的CL下均表现出恒定且均匀的传导。花萼海绵诱癌素(灌注15分钟)加速了传导,对右心室的作用(增加15.3%)大于左心室(增加4.1%;P < 0.05)。相反,KN93和H89均以一种与腔室、时间和CL相关的方式减慢传导,在右心室流出道(RVOT)的作用最强。联合使用KN93和H89可协同促进右心室传导减慢(KN93:24.7%;H89:29.9%;KN93 + H89:114.2%;P = 0.0016),但对左心室无此作用。右心室传导的逐渐抑制会导致传导阻滞和折返性心律失常。CaMKII - δ亚型和PKA催化亚基的蛋白表达水平在右心室流出道高于左心室心尖部(P < 0.05)。因此,正常的右心室传导需要激酶和磷酸酶活性之间的适当平衡。由于药物干预或疾病导致这种平衡失调可能会引发心律失常。我们表明,均匀的心室传导需要钙/钙调蛋白依赖性蛋白激酶II(CaMKII)、PKA和磷酸酶活性的精确生理平衡,这涉及CaMKII和PKA的区域特异性表达。抑制CaMKII和/或PKA活性会引发不均匀的传导抑制,使右心室更容易出现传导障碍和心室颤动/室性心动过速。