Suppr超能文献

Evaluation of time domain features using best feature subsets based on mutual information for detecting epilepsy.

作者信息

Sharmila A, Geethanjali P

机构信息

a School of Electrical Engineering, Vellore Institute of Technology , Vellore, India.

出版信息

J Med Eng Technol. 2018 Oct;42(7):487-500. doi: 10.1080/03091902.2019.1572236. Epub 2019 Mar 15.

Abstract

In this pattern recognition study of detecting epilepsy, the first time the authors have attempted to use time domain (TD) features such as waveform length (WL), number of zero-crossings (ZC) and number of slope sign changes (SSC) which are extracted from the discrete wavelet transform (DWT) for the detecting the epilepsy for University of Bonn datasets and real-time clinical data. The performance of these TD features is studied along with mean absolute value (MAV) which has been attempted by other researchers. The performance of the TD features derived from DWT is studied using naive Bayes (NB) and support vector machines (SVM) for five different datasets from University of Bonn with 14 different combinations datasets and 24 patients datasets from Christian Medical College and Hospital (CMCH), India database. Using feature selection and feature ranking based on the estimation of mutual information (MI), the significant features required for the classifier to get higher accuracy is obtained. Further, NB achieves 100% classification accuracy (CA) in distinguishing normal eyes open and epileptic dataset with top 4 ranked features and it gives 100% accuracy with top-ranked two features in using CMCH data.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验