Suppr超能文献

基于 MERFISH 数据的单细胞转录表达分析的贝叶斯模型。

A Bayesian model for single cell transcript expression analysis on MERFISH data.

机构信息

Algorithms for Reproducible Bioinformatics, Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.

Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.

出版信息

Bioinformatics. 2019 Mar 15;35(6):995-1001. doi: 10.1093/bioinformatics/bty718.

Abstract

MOTIVATION

Multiplexed error-robust fluorescence in-situ hybridization (MERFISH) is a recent technology to obtain spatially resolved gene or transcript expression profiles in single cells for hundreds to thousands of genes in parallel. So far, no statistical framework to analyze MERFISH data is available.

RESULTS

We present a Bayesian model for single cell transcript expression analysis on MERFISH data. We show that the model successfully captures uncertainty in MERFISH data and eliminates systematic biases that can occur in raw RNA molecule counts obtained with MERFISH. Our model accurately estimates transcript expression and additionally provides the full probability distribution and credible intervals for each transcript. We further show how this enables MERFISH to scale towards the whole genome while being able to control the uncertainty in obtained results.

AVAILABILITY AND IMPLEMENTATION

The presented model is implemented on top of Rust-Bio (Köster, 2016) and available open-source as MERFISHtools (https://merfishtools.github.io). It can be easily installed via Bioconda (Grüning et al., 2018). The entire analysis performed in this paper is provided as a fully reproducible Snakemake (Köster and Rahmann, 2012) workflow via Zenodo (https://doi.org/10.5281/zenodo.752340).

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

多重稳健荧光原位杂交(MERFISH)是一种最新的技术,可以在单细胞中同时获得数百到数千个基因的空间分辨基因或转录物表达谱。到目前为止,还没有用于分析 MERFISH 数据的统计框架。

结果

我们提出了一种用于 MERFISH 数据的单细胞转录物表达分析的贝叶斯模型。我们表明,该模型成功地捕获了 MERFISH 数据中的不确定性,并消除了 MERFISH 获得的原始 RNA 分子计数中可能出现的系统偏差。我们的模型准确地估计了转录物的表达,并且还提供了每个转录物的完整概率分布和可信区间。我们进一步展示了这如何使 MERFISH 能够扩展到整个基因组,同时能够控制获得结果的不确定性。

可用性和实现

所提出的模型是在 Rust-Bio(Köster,2016)之上实现的,并作为 MERFISHtools(https://merfishtools.github.io)开源提供。它可以通过 Bioconda(Grüning 等人,2018)轻松安装。本文中执行的整个分析都通过 Zenodo(https://doi.org/10.5281/zenodo.752340)以完全可重复的 Snakemake(Köster 和 Rahmann,2012)工作流程提供。

补充信息

补充数据可在《生物信息学》在线获得。

相似文献

9
MERFISHing for spatial context.MERFISH 技术用于获取空间背景信息。
Trends Immunol. 2015 Jul;36(7):390-1. doi: 10.1016/j.it.2015.05.002. Epub 2015 May 23.
10
Sparcle: assigning transcripts to cells in multiplexed images.Sparcle:在多重图像中将转录本分配到细胞中。
Bioinform Adv. 2022 Jun 17;2(1):vbac048. doi: 10.1093/bioadv/vbac048. eCollection 2022.

本文引用的文献

4
Rust-Bio: a fast and safe bioinformatics library.Rust-Bio:一个快速且安全的生物信息学库。
Bioinformatics. 2016 Feb 1;32(3):444-6. doi: 10.1093/bioinformatics/btv573. Epub 2015 Oct 6.
6
A survey of human brain transcriptome diversity at the single cell level.单细胞水平上人类大脑转录组多样性的一项调查。
Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7285-90. doi: 10.1073/pnas.1507125112. Epub 2015 May 18.
7
MERFISHing for spatial context.MERFISH 技术用于获取空间背景信息。
Trends Immunol. 2015 Jul;36(7):390-1. doi: 10.1016/j.it.2015.05.002. Epub 2015 May 23.
10
Spatially resolved transcriptomics and beyond.空间分辨转录组学及其他。
Nat Rev Genet. 2015 Jan;16(1):57-66. doi: 10.1038/nrg3832. Epub 2014 Dec 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验