Yu Jinge, Luo Xiangyu
Institute of Statistics and Big Data, Renmin University of China, Beijing, China.
Front Genet. 2021 Apr 26;12:656637. doi: 10.3389/fgene.2021.656637. eCollection 2021.
Recent advances in single-cell technologies enable spatial expression profiling at the cell level, making it possible to elucidate spatial changes of cell-specific genomic features. The gene co-expression network is an important feature that encodes the gene-gene marginal dependence structure and allows for the functional annotation of highly connected genes. In this paper, we design a simple and computationally efficient two-step algorithm to recover spatially-varying cell-specific gene co-expression networks for single-cell spatial expression data. The algorithm first estimates the gene expression covariance matrix for each cell type and then leverages the spatial locations of cells to construct cell-specific networks. The second step uses expression covariance matrices estimated in step one and label information from neighboring cells as an empirical prior to obtain thresholded Bayesian posterior estimates. After completing estimates for each cell, this algorithm can further predict or interpolate gene co-expression networks on tissue positions where cells are not captured. In the simulation study, the comparison against the traditional cell-type-specific network algorithms and the cell-specific network method but without incorporating spatial information highlights the advantages of the proposed algorithm in estimation accuracy. We also applied our algorithm to real-world datasets and found some meaningful biological results. The accompanied software is available on https://github.com/jingeyu/CSSN.
单细胞技术的最新进展使得在细胞水平上进行空间表达谱分析成为可能,从而能够阐明细胞特异性基因组特征的空间变化。基因共表达网络是一种重要特征,它编码基因-基因边缘依赖结构,并允许对高度连接的基因进行功能注释。在本文中,我们设计了一种简单且计算高效的两步算法,用于从单细胞空间表达数据中恢复空间变化的细胞特异性基因共表达网络。该算法首先估计每种细胞类型的基因表达协方差矩阵,然后利用细胞的空间位置构建细胞特异性网络。第二步使用第一步中估计的表达协方差矩阵以及来自相邻细胞的标签信息作为经验先验,以获得阈值化的贝叶斯后验估计。在完成对每个细胞的估计后,该算法可以进一步预测或插值未捕获细胞的组织位置上的基因共表达网络。在模拟研究中,与传统的细胞类型特异性网络算法以及未纳入空间信息的细胞特异性网络方法进行比较,突出了所提出算法在估计准确性方面的优势。我们还将算法应用于实际数据集,并发现了一些有意义的生物学结果。配套软件可在https://github.com/jingeyu/CSSN上获取。