Stylianakis Minas M, Maksudov Temur, Panagiotopoulos Apostolos, Kakavelakis George, Petridis Konstantinos
Center of Materials Technology and Photonics & Electrical Engineering Department, Technological Educational Institute (TEI) of Crete, 71004 Heraklion, Crete, Greece.
Department of Materials Science and Technology, University of Crete, Vassilika Voutes GR-700 13, 71004 Heraklion, Crete, Greece.
Materials (Basel). 2019 Mar 14;12(6):859. doi: 10.3390/ma12060859.
Inorganic and organic-inorganic (hybrid) perovskite semiconductor materials have attracted worldwide scientific attention and research effort as the new wonder semiconductor material in optoelectronics. Their excellent physical and electronic properties have been exploited to boost the solar cells efficiency beyond 23% and captivate their potential as competitors to the dominant silicon solar cells technology. However, the fundamental principles in Physics, dictate that an excellent direct band gap material for photovoltaic applications must be also an excellent light emitter candidate. This has been realized for the case of perovskite-based light emitting diodes (LEDs) but much less for the case of the respective laser devices. Here, the strides, exclusively in lasing, made since 2014 are presented for the first time. The solution processability, low temperature crystallization, formation of nearly defect free, nanostructures, the long range ambipolar transport, the direct energy band gap, the high spectral emission tunability over the entire visible spectrum and the almost 100% external luminescence efficiency show perovskite semiconductors' potential to transform the nanophotonics sector. The operational principles, the various adopted material and laser configurations along the future challenges are reviewed and presented in this paper.
无机及有机-无机(混合)钙钛矿半导体材料作为光电子学领域的新型神奇半导体材料,已引起全球科学界的关注并投入研究。人们利用其优异的物理和电子特性,将太阳能电池效率提高到了23%以上,并使其有望成为主导硅太阳能电池技术的有力竞争者。然而,物理学的基本原理表明,一种适用于光伏应用的优异直接带隙材料也必定是一种出色的发光材料候选者。钙钛矿基发光二极管(LED)的情况已得到证实,但相应的激光器件的情况则不然。在此,首次展示了自2014年以来在激光领域所取得的进展。溶液可加工性、低温结晶、形成几乎无缺陷的纳米结构、长程双极性传输、直接能带隙、在整个可见光谱范围内的高光谱发射可调性以及几乎100%的外发光效率,都表明钙钛矿半导体有潜力改变纳米光子学领域。本文对其工作原理、各种采用的材料和激光配置以及未来面临的挑战进行了综述和介绍。