Hershko Eran, Weiss Lucien E, Michaeli Tomer, Shechtman Yoav
Opt Express. 2019 Mar 4;27(5):6158-6183. doi: 10.1364/OE.27.006158.
Deep learning has become an extremely effective tool for image classification and image restoration problems. Here, we apply deep learning to microscopy and demonstrate how neural networks can exploit the chromatic dependence of the point-spread function to classify the colors of single emitters imaged on a grayscale camera. While existing localization microscopy methods for spectral classification require additional optical elements in the emission path, e.g., spectral filters, prisms, or phase masks, our neural net correctly identifies static and mobile emitters with high efficiency using a standard, unmodified single-channel configuration. Furthermore, we show how deep learning can be used to design new phase-modulating elements that, when implemented into the imaging path, result in further improved color differentiation between species, including simultaneously differentiating four species in a single image.
深度学习已成为解决图像分类和图像恢复问题的极其有效的工具。在此,我们将深度学习应用于显微镜技术,并展示神经网络如何利用点扩散函数的色度相关性来对在灰度相机上成像的单个发光体的颜色进行分类。虽然现有的用于光谱分类的定位显微镜方法在发射路径中需要额外的光学元件,例如光谱滤光片、棱镜或相位掩膜,但我们的神经网络使用标准的、未修改的单通道配置就能高效地正确识别静态和移动发光体。此外,我们展示了如何利用深度学习来设计新的相位调制元件,当将其应用于成像路径时,能进一步改善不同物种之间的颜色区分,包括在单个图像中同时区分四个物种。