Suppr超能文献

基于深度学习的多色定位显微镜与点扩散函数工程

Multicolor localization microscopy and point-spread-function engineering by deep learning.

作者信息

Hershko Eran, Weiss Lucien E, Michaeli Tomer, Shechtman Yoav

出版信息

Opt Express. 2019 Mar 4;27(5):6158-6183. doi: 10.1364/OE.27.006158.

Abstract

Deep learning has become an extremely effective tool for image classification and image restoration problems. Here, we apply deep learning to microscopy and demonstrate how neural networks can exploit the chromatic dependence of the point-spread function to classify the colors of single emitters imaged on a grayscale camera. While existing localization microscopy methods for spectral classification require additional optical elements in the emission path, e.g., spectral filters, prisms, or phase masks, our neural net correctly identifies static and mobile emitters with high efficiency using a standard, unmodified single-channel configuration. Furthermore, we show how deep learning can be used to design new phase-modulating elements that, when implemented into the imaging path, result in further improved color differentiation between species, including simultaneously differentiating four species in a single image.

摘要

深度学习已成为解决图像分类和图像恢复问题的极其有效的工具。在此,我们将深度学习应用于显微镜技术,并展示神经网络如何利用点扩散函数的色度相关性来对在灰度相机上成像的单个发光体的颜色进行分类。虽然现有的用于光谱分类的定位显微镜方法在发射路径中需要额外的光学元件,例如光谱滤光片、棱镜或相位掩膜,但我们的神经网络使用标准的、未修改的单通道配置就能高效地正确识别静态和移动发光体。此外,我们展示了如何利用深度学习来设计新的相位调制元件,当将其应用于成像路径时,能进一步改善不同物种之间的颜色区分,包括在单个图像中同时区分四个物种。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验