Kumar Gaire Sunil, Zhang Yang, Li Hongyu, Yu Ray, Zhang Hao F, Ying Leslie
Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA.
Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.
Biomed Opt Express. 2020 Apr 24;11(5):2705-2721. doi: 10.1364/BOE.391806. eCollection 2020 May 1.
Spectroscopic single-molecule localization microscopy (sSMLM) simultaneously provides spatial localization and spectral information of individual single-molecules emission, offering multicolor super-resolution imaging of multiple molecules in a single sample with the nanoscopic resolution. However, this technique is limited by the requirements of acquiring a large number of frames to reconstruct a super-resolution image. In addition, multicolor sSMLM imaging suffers from spectral cross-talk while using multiple dyes with relatively broad spectral bands that produce cross-color contamination. Here, we present a computational strategy to accelerate multicolor sSMLM imaging. Our method uses deep convolution neural networks to reconstruct high-density multicolor super-resolution images from low-density, contaminated multicolor images rendered using sSMLM datasets with much fewer frames, without compromising spatial resolution. High-quality, super-resolution images are reconstructed using up to 8-fold fewer frames than usually needed. Thus, our technique generates multicolor super-resolution images within a much shorter time, without any changes in the existing sSMLM hardware system. Two-color and three-color sSMLM experimental results demonstrate superior reconstructions of tubulin/mitochondria, peroxisome/mitochondria, and tubulin/mitochondria/peroxisome in fixed COS-7 and U2-OS cells with a significant reduction in acquisition time.
光谱单分子定位显微镜(sSMLM)同时提供单个单分子发射的空间定位和光谱信息,能够以纳米级分辨率对单个样本中的多个分子进行多色超分辨率成像。然而,该技术受到重建超分辨率图像所需大量帧数的限制。此外,多色sSMLM成像在使用具有相对较宽光谱带的多种染料时会出现光谱串扰,从而产生跨颜色污染。在此,我们提出一种计算策略来加速多色sSMLM成像。我们的方法使用深度卷积神经网络从使用帧数少得多的sSMLM数据集渲染的低密度、受污染的多色图像中重建高密度多色超分辨率图像,同时不影响空间分辨率。使用比通常所需帧数少多达8倍的帧数即可重建高质量的超分辨率图像。因此,我们的技术在更短的时间内生成多色超分辨率图像,而无需对现有的sSMLM硬件系统进行任何更改。双色和三色sSMLM实验结果表明,在固定的COS-7和U2-OS细胞中,微管蛋白/线粒体、过氧化物酶体/线粒体以及微管蛋白/线粒体/过氧化物酶体的重建效果优异,采集时间显著缩短。