Suppr超能文献

静电和疏水相互作用网络调节设计的 βα 蛋白质的复杂折叠自由能表面。

Networks of electrostatic and hydrophobic interactions modulate the complex folding free energy surface of a designed βα protein.

机构信息

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605.

Exploratory Research Center on Life and Living Systems, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, 444-8585 Aichi, Japan.

出版信息

Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6806-6811. doi: 10.1073/pnas.1818744116. Epub 2019 Mar 15.

Abstract

The successful de novo design of proteins can provide insights into the physical chemical basis of stability, the role of evolution in constraining amino acid sequences, and the production of customizable platforms for engineering applications. Previous guanidine hydrochloride (GdnHCl; an ionic denaturant) experiments of a designed, naturally occurring βα fold, Di-III_14, revealed a cooperative, two-state unfolding transition and a modest stability. Continuous-flow mixing experiments in our laboratory revealed a simple two-state reaction in the microsecond to millisecond time range and consistent with the thermodynamic results. In striking contrast, the protein remains folded up to 9.25 M in urea, a neutral denaturant, and hydrogen exchange (HDX) NMR analysis in water revealed the presence of numerous high-energy states that interconvert on a time scale greater than seconds. The complex protection pattern for HDX corresponds closely with a pair of electrostatic networks on the surface and an extensive network of hydrophobic side chains in the interior of the protein. Mutational analysis showed that electrostatic and hydrophobic networks contribute to the resistance to urea denaturation for the WT protein; remarkably, single charge reversals on the protein surface restore the expected urea sensitivity. The roughness of the energy surface reflects the densely packed hydrophobic core; the removal of only two methyl groups eliminates the high-energy states and creates a smooth surface. The design of a very stable βα fold containing electrostatic and hydrophobic networks has created a complex energy surface rarely observed in natural proteins.

摘要

从头设计蛋白质的成功可以深入了解稳定性的物理化学基础、进化在限制氨基酸序列方面的作用,以及为工程应用定制可设计平台的生产。先前对设计的天然 βα 折叠 Di-III_14 的胍盐酸盐 (GdnHCl;离子变性剂) 实验揭示了一个协同的、两态展开转变和适度的稳定性。我们实验室的连续流动混合实验揭示了一个简单的两态反应,反应时间范围在微秒到毫秒之间,与热力学结果一致。与此形成鲜明对比的是,该蛋白质在中性变性剂脲中高达 9.25 M 时仍保持折叠状态,水相中的氢氚交换 (HDX) NMR 分析显示存在许多高能状态,这些状态在超过秒的时间尺度上相互转换。复杂的 HDX 保护模式与蛋白质表面上的一对静电网络和蛋白质内部广泛的疏水侧链网络密切相关。突变分析表明,静电网络和疏水网络有助于 WT 蛋白质抵抗脲变性;值得注意的是,蛋白质表面上的单个电荷反转恢复了预期的脲敏感性。能量表面的粗糙度反映了密集堆积的疏水核心;只需去除两个甲基基团就可以消除高能状态并创建一个平滑的表面。包含静电和疏水网络的非常稳定的 βα 折叠的设计创造了一个在天然蛋白质中很少观察到的复杂能量表面。

相似文献

引用本文的文献

5
Evolution of the folding landscape of effector caspases.效应子半胱天冬酶折叠景观的演变。
J Biol Chem. 2021 Nov;297(5):101249. doi: 10.1016/j.jbc.2021.101249. Epub 2021 Sep 28.
7
Voronoia 4-ever.沃罗诺伊万岁。
Nucleic Acids Res. 2021 Jul 2;49(W1):W685-W690. doi: 10.1093/nar/gkab466.
10
Evolution, folding, and design of TIM barrels and related proteins.TIM 桶及相关蛋白的进化、折叠和设计。
Curr Opin Struct Biol. 2021 Jun;68:94-104. doi: 10.1016/j.sbi.2020.12.007. Epub 2021 Jan 13.

本文引用的文献

2
Accurate computational design of multipass transmembrane proteins.多跨膜蛋白的精确计算设计。
Science. 2018 Mar 2;359(6379):1042-1046. doi: 10.1126/science.aaq1739.
3
Comprehensive computational design of ordered peptide macrocycles.有序肽大环的综合计算设计
Science. 2017 Dec 15;358(6369):1461-1466. doi: 10.1126/science.aap7577.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验