Suppr超能文献

真核α-螺旋宿主防御肽的统一结构特征。

Unifying structural signature of eukaryotic α-helical host defense peptides.

机构信息

Division of Molecular Medicine, Department of Medicine, Los Angeles County Harbor-University of California, Los Angeles, Medical Center, Torrance, CA 90509.

Division of Infectious Diseases, Department of Medicine, Los Angeles County Harbor-University of California, Los Angeles, Medical Center, Torrance, CA 90509.

出版信息

Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6944-6953. doi: 10.1073/pnas.1819250116. Epub 2019 Mar 15.

Abstract

Diversity of α-helical host defense peptides (αHDPs) contributes to immunity against a broad spectrum of pathogens via multiple functions. Thus, resolving common structure-function relationships among αHDPs is inherently difficult, even for artificial-intelligence-based methods that seek multifactorial trends rather than foundational principles. Here, bioinformatic and pattern recognition methods were applied to identify a unifying signature of eukaryotic αHDPs derived from amino acid sequence, biochemical, and three-dimensional properties of known αHDPs. The signature formula contains a helical domain of 12 residues with a mean hydrophobic moment of 0.50 and favoring aliphatic over aromatic hydrophobes in 18-aa windows of peptides or proteins matching its semantic definition. The holistic α-core signature subsumes existing physicochemical properties of αHDPs, and converged strongly with predictions of an independent machine-learning-based classifier recognizing sequences inducing negative Gaussian curvature in target membranes. Queries using the α-core formula identified 93% of all annotated αHDPs in proteomic databases and retrieved all major αHDP families. Synthesis and antimicrobial assays confirmed efficacies of predicted sequences having no previously known antimicrobial activity. The unifying α-core signature establishes a foundational framework for discovering and understanding αHDPs encompassing diverse structural and mechanistic variations, and affords possibilities for deterministic design of antiinfectives.

摘要

α-螺旋宿主防御肽(αHDPs)的多样性通过多种功能有助于抵御广谱病原体。因此,即使是基于人工智能的方法,也很难确定 αHDPs 之间常见的结构-功能关系,这些方法旨在寻找多因素趋势,而不是基础原理。在这里,生物信息学和模式识别方法被应用于从氨基酸序列、生化和三维特性中识别出真核 αHDPs 的统一特征。该特征公式包含一个 12 个残基的螺旋结构域,平均疏水性矩为 0.50,在匹配其语义定义的肽或蛋白质的 18 个氨基酸窗口中,优先选择脂肪族而非芳香族疏水性。整体的 α 核心特征包含了 αHDPs 的现有物理化学性质,并与独立的基于机器学习的分类器的预测强烈收敛,该分类器识别在靶膜中诱导负高斯曲率的序列。使用 α 核心公式进行查询可在蛋白质组学数据库中识别出 93%的所有注释的 αHDPs,并检索到所有主要的 αHDP 家族。合成和抗菌测定证实了具有先前未知抗菌活性的预测序列的功效。统一的 α 核心特征为发现和理解涵盖多种结构和机制变化的 αHDPs 建立了一个基础框架,并为抗感染药物的确定性设计提供了可能性。

相似文献

1
Unifying structural signature of eukaryotic α-helical host defense peptides.真核α-螺旋宿主防御肽的统一结构特征。
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6944-6953. doi: 10.1073/pnas.1819250116. Epub 2019 Mar 15.
4
Amphipathic, alpha-helical antimicrobial peptides.两亲性α-螺旋抗菌肽。
Biopolymers. 2000;55(1):4-30. doi: 10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M.
8
Machine learning-enabled discovery and design of membrane-active peptides.基于机器学习的膜活性肽的发现和设计。
Bioorg Med Chem. 2018 Jun 1;26(10):2708-2718. doi: 10.1016/j.bmc.2017.07.012. Epub 2017 Jul 8.
9
Design and synthesis of amphipathic antimicrobial peptides.两亲性抗菌肽的设计与合成
Int J Pept Protein Res. 1995 Apr;45(4):337-47. doi: 10.1111/j.1399-3011.1995.tb01047.x.

引用本文的文献

2
Characteristics and therapeutic applications of antimicrobial peptides.抗菌肽的特性与治疗应用
Biophys Rev (Melville). 2021 Feb 19;2(1):011301. doi: 10.1063/5.0035731. eCollection 2021 Mar.
4
Krein support vector machine classification of antimicrobial peptides.抗菌肽的Krein支持向量机分类
Digit Discov. 2023 Feb 27;2(2):502-511. doi: 10.1039/d3dd00004d. eCollection 2023 Apr 11.
6
Unraveling the Role of Antimicrobial Peptides in Insects.解析昆虫抗菌肽的作用。
Int J Mol Sci. 2023 Mar 17;24(6):5753. doi: 10.3390/ijms24065753.

本文引用的文献

6
Machine learning-enabled discovery and design of membrane-active peptides.基于机器学习的膜活性肽的发现和设计。
Bioorg Med Chem. 2018 Jun 1;26(10):2708-2718. doi: 10.1016/j.bmc.2017.07.012. Epub 2017 Jul 8.
7
Direct Antimicrobial Activity of IFN-β.干扰素-β的直接抗菌活性
J Immunol. 2017 May 15;198(10):4036-4045. doi: 10.4049/jimmunol.1601226. Epub 2017 Apr 14.
10
APD3: the antimicrobial peptide database as a tool for research and education.APD3:作为研究与教育工具的抗菌肽数据库
Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93. doi: 10.1093/nar/gkv1278. Epub 2015 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验