Suppr超能文献

数字健康十五年:更有人文关怀(更有必要)。

Digital health at fifteen: more human (more needed).

机构信息

Black Dog Institute, Hospital Road, Prince of Wales Hospital, University of New South Wales Sydney, Randwick, NSW, 2031, Australia.

Center for Policy, Outcomes, and Prevention, 117 Encina Commons, Stanford University, Stanford, CA, 94305-6019, USA.

出版信息

BMC Med. 2019 Mar 18;17(1):62. doi: 10.1186/s12916-019-1302-0.

Abstract

There is growing appreciation that the success of digital health - whether digital tools, digital interventions or technology-based change strategies - is linked to the extent to which human factors are considered throughout design, development and implementation. A shift in focus to individuals as users and consumers of digital health highlights the capacity of the field to respond to secular developments, such as the adoption of person-centred care and consumer health technologies. We argue that this project is not only incomplete, but is fundamentally 'uncompletable' in the face of a highly dynamic landscape of both technological and human challenges. These challenges include the effects of consumerist, technology-supported care on care delivery, the rapid growth of digital users in low-income and middle-income countries and the impacts of machine learning. Digital health research will create most value by retaining a clear focus on the role of human factors in maximising health benefit, by helping health systems to anticipate and understand the person-centred effects of technology changes and by advocating strongly for the autonomy, rights and safety of consumers.

摘要

人们越来越认识到,数字健康的成功——无论是数字工具、数字干预还是基于技术的变革策略——都与在设计、开发和实施过程中考虑到人为因素的程度有关。将关注点从数字健康的使用者和消费者转移到个人身上,突出了该领域应对诸如以患者为中心的护理和消费者健康技术等长期发展的能力。我们认为,面对技术和人为挑战的高度动态局面,该项目不仅不完整,而且从根本上是“不可完成的”。这些挑战包括消费者导向、技术支持的护理对护理提供的影响,以及低收入和中等收入国家数字用户的快速增长,以及机器学习的影响。数字健康研究通过明确关注人为因素在最大化健康效益方面的作用,通过帮助卫生系统预测和理解技术变革的以患者为中心的影响,以及通过强烈倡导消费者的自主权、权利和安全,将创造最大价值。

相似文献

1
Digital health at fifteen: more human (more needed).
BMC Med. 2019 Mar 18;17(1):62. doi: 10.1186/s12916-019-1302-0.
2
Unlocking the eHealth professionals' career pathways: A case of Gulf Cooperation Council countries.
Int J Med Inform. 2023 Feb;170:104914. doi: 10.1016/j.ijmedinf.2022.104914. Epub 2022 Nov 11.
3
Digital health technologies: opportunities and challenges in rheumatology.
Nat Rev Rheumatol. 2020 Sep;16(9):525-535. doi: 10.1038/s41584-020-0461-x. Epub 2020 Jul 24.
9
User-Innovated eHealth Solutions for Service Delivery to Older Persons With Hearing Impairment.
Am J Audiol. 2018 Nov 19;27(3S):403-416. doi: 10.1044/2018_AJA-IMIA3-18-0009.
10
Health Technology Assessment for Cardiovascular Digital Health Technologies and Artificial Intelligence: Why Is It Different?
Can J Cardiol. 2022 Feb;38(2):259-266. doi: 10.1016/j.cjca.2021.08.015. Epub 2021 Aug 28.

引用本文的文献

1
Beyond individual barriers and facilitators: Digital interventions to address diabetes in urban Ghana.
Digit Health. 2025 Jul 28;11:20552076251349705. doi: 10.1177/20552076251349705. eCollection 2025 Jan-Dec.
2
Mapping the Process of Engagement With Digital Health Interventions: A Cross-Case Synthesis.
Mayo Clin Proc Innov Qual Outcomes. 2025 May 27;9(3):100625. doi: 10.1016/j.mayocpiqo.2025.100625. eCollection 2025 Jun.
3
The conceptualisation and measurement of engagement in digital health.
Internet Interv. 2024 Mar 11;36:100735. doi: 10.1016/j.invent.2024.100735. eCollection 2024 Jun.
5
A human centred approach to digital technologies in health care delivery among mothers, children and adolescents.
BMC Health Serv Res. 2022 Nov 23;22(1):1393. doi: 10.1186/s12913-022-08744-2.
6
Using provocative design to foster electronic informed consent innovation.
BMC Med Inform Decis Mak. 2022 Nov 17;22(1):296. doi: 10.1186/s12911-022-02039-6.
9
Achieving the potential of mHealth in medicine requires challenging the ethos of care delivery.
Prim Health Care Res Dev. 2022 Mar 22;23:e18. doi: 10.1017/S1463423622000068.

本文引用的文献

1
Prescribable mHealth apps identified from an overview of systematic reviews.
NPJ Digit Med. 2018 May 9;1:12. doi: 10.1038/s41746-018-0021-9. eCollection 2018.
2
Potential Biases in Machine Learning Algorithms Using Electronic Health Record Data.
JAMA Intern Med. 2018 Nov 1;178(11):1544-1547. doi: 10.1001/jamainternmed.2018.3763.
3
Clinical review of user engagement with mental health smartphone apps: evidence, theory and improvements.
Evid Based Ment Health. 2018 Aug;21(3):116-119. doi: 10.1136/eb-2018-102891. Epub 2018 Jun 5.
6
Unintended Consequences of Machine Learning in Medicine.
JAMA. 2017 Aug 8;318(6):517-518. doi: 10.1001/jama.2017.7797.
7
Shortage of general practitioners in the NHS.
BMJ. 2017 Jul 10;358:j3191. doi: 10.1136/bmj.j3191.
10
Mobile telephone apps first need data security and efficacy.
BJPsych Bull. 2016 Apr;40(2):106-7. doi: 10.1192/pb.40.2.106b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验