Biomedical Engineering, National University of Ireland Galway, University Road, Galway, Ireland.
Invibio Ltd., Hillhouse International, Thornton-Cleveleys FY5 4QD, United Kingdom.
Med Eng Phys. 2019 May;67:22-32. doi: 10.1016/j.medengphy.2019.03.006. Epub 2019 Mar 15.
Carbon fibre reinforced PEEK (CF/PEEK) laminates provide mechanical advantages over homogenous metal osteo-synthesis implants, e.g. radiolucency, fatigue strength and strength to weight ratio. Implants can be designed with custom anisotropic material properties, thus enabling the engineer to tailor the overall stiffness of the implant to the specific loading conditions it will experience in vivo. In the current study a multi-scale computational investigation of idealised distal radius fracture fixation plate (DRP) is conducted. Physiological loading conditions are applied to macro-scale finite element models of DRPs. The mechanical response is compared for several CF/PEEK laminate layups to examine the effect of ply layup design. The importance of ply orientation in laminated DRPs is highlighted. A high number of 0° plies near the outer surfaces results in a greater bending strength while the addition of 45° plies increases the torsional strength of the laminates. Intra-laminar transverse tensile failure is predicted as the primary mode of failure. A micro-mechanical analysis of the CF/PEEK microstructure uncovers the precise mechanism under-lying intra-laminar transverse tensile crack to be debonding of the PEEK matrix from carbon fibres. Plastic strains in the matrix material are not sufficiently high to result in ductile failure of the matrix. The findings of this study demonstrate the significant challenge in the design and optimisation of fibre reinforced laminated composites for orthopaedic applications, highlighting the importance of multi-scale modelling for identification of failure mechanisms.
碳纤维增强聚醚醚酮(CF/PEEK)层压板提供了优于同质金属骨合成植入物的机械优势,例如放射透明性、疲劳强度和强度重量比。可以使用定制各向异性材料特性来设计植入物,从而使工程师能够根据植入物在体内将经历的特定加载条件来调整植入物的整体刚度。在当前的研究中,对理想化的桡骨远端骨折固定板(DRP)进行了多尺度计算研究。生理加载条件应用于 DRP 的宏观有限元模型。比较了几种 CF/PEEK 层压板铺层的机械响应,以检查层压板设计的效果。强调了层压板 DRP 中铺层方向的重要性。靠近外表面的大量 0°层会导致更大的弯曲强度,而添加 45°层会增加层压板的扭转强度。预测层内横向拉伸破坏是主要的破坏模式。对 CF/PEEK 微观结构的微观力学分析揭示了层内横向拉伸裂纹的潜在微观机制,即 PEEK 基体与碳纤维之间的脱粘。基体材料中的塑性应变没有高到导致基体发生韧性失效。本研究的结果表明,对于用于矫形应用的纤维增强层压复合材料的设计和优化存在重大挑战,突出了多尺度建模对于识别失效机制的重要性。