文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

低温等离子体改善聚醚醚酮生物材料的化学和细胞特性以实现生物矿化

Low-Temperature Plasmas Improving Chemical and Cellular Properties of Poly (Ether Ether Ketone) Biomaterial for Biomineralization.

作者信息

Bradford John P, Hernandez-Moreno Gerardo, Pillai Renjith R, Hernandez-Nichols Alexandria L, Thomas Vinoy

机构信息

Polymer and Healthcare Material/Devices, Department of Mechanical and Materials Engineering, The University of Alabama, Birmingham, AL 35294, USA.

Department of Cellular and Molecular Pathology, Heersink School of Medicine, The University of Alabama, Birmingham, AL 35294, USA.

出版信息

Materials (Basel). 2023 Dec 28;17(1):171. doi: 10.3390/ma17010171.


DOI:10.3390/ma17010171
PMID:38204023
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10780010/
Abstract

Osteoblastic and chemical responses to Poly (ether ether ketone) (PEEK) material have been improved using a variety of low-temperature plasmas (LTPs). Surface chemical properties are modified, and can be used, using low-temperature plasma (LTP) treatments which change surface functional groups. These functional groups increase biomineralization, in simulated body fluid conditions, and cellular viability. PEEK scaffolds were treated, with a variety of LTPs, incubated in simulated body fluids, and then analyzed using multiple techniques. First, scanning electron microscopy (SEM) showed morphological changes in the biomineralization for all samples. Calcein staining, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) confirmed that all low-temperature plasma-treated groups showed higher levels of biomineralization than the control group. MTT cell viability assays showed LTP-treated groups had increased cell viability in comparison to non-LTP-treated controls. PEEK treated with triethyl phosphate plasma (TEP) showed higher levels of cellular viability at 82.91% ± 5.00 ( = 6) and mineralization. These were significantly different to both the methyl methacrylate (MMA) 77.38% ± 1.27, ethylene diamine (EDA) 64.75% ± 6.43 plasma-treated PEEK groups, and the control, non-plasma-treated group 58.80 ± 2.84. FTIR showed higher levels of carbonate and phosphate formation on the TEP-treated PEEK than the other samples; however, calcein staining fluorescence of MMA and TEP-treated PEEK had the highest levels of biomineralization measured by pixel intensity quantification of 101.17 ± 4.63 and 96.35 ± 3.58, respectively, while EDA and control PEEK samples were 89.53 ± 1.74 and 90.49 ± 2.33, respectively. Comparing different LTPs, we showed that modified surface chemistry has quantitatively measurable effects that are favorable to the cellular, biomineralization, and chemical properties of PEEK.

摘要

通过使用多种低温等离子体(LTP),聚醚醚酮(PEEK)材料的成骨和化学反应得到了改善。表面化学性质得到了改变,并且可以通过改变表面官能团的低温等离子体(LTP)处理来实现。在模拟体液条件下,这些官能团可增加生物矿化和细胞活力。对PEEK支架进行了多种LTP处理,在模拟体液中孵育,然后使用多种技术进行分析。首先,扫描电子显微镜(SEM)显示所有样品在生物矿化方面的形态变化。钙黄绿素染色、傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)证实,所有低温等离子体处理组的生物矿化水平均高于对照组。MTT细胞活力测定表明,与未进行LTP处理的对照组相比,LTP处理组的细胞活力有所提高。用磷酸三乙酯等离子体(TEP)处理的PEEK在细胞活力方面表现出更高的水平,为82.91%±5.00(n = 6),矿化水平也更高。这些与甲基丙烯酸甲酯(MMA)77.38%±1.27、乙二胺(EDA)64.75%±6.43等离子体处理的PEEK组以及未进行等离子体处理的对照组58.80±2.84均有显著差异。FTIR显示,TEP处理的PEEK上碳酸根和磷酸根的形成水平高于其他样品;然而,通过像素强度定量测量,MMA和TEP处理的PEEK的钙黄绿素染色荧光的生物矿化水平最高,分别为101.17±4.63和96.35±3.58,而EDA和对照PEEK样品分别为89.53±1.74和90.49±2.33。比较不同的LTP,我们发现改性表面化学具有定量可测量的效果,有利于PEEK的细胞、生物矿化和化学性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104c/10780010/de9308117bf7/materials-17-00171-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104c/10780010/062362ae427f/materials-17-00171-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104c/10780010/19326e01783b/materials-17-00171-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104c/10780010/9afbd7acffdf/materials-17-00171-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104c/10780010/1aad2d3a4fc1/materials-17-00171-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104c/10780010/cf2dbab9c71a/materials-17-00171-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104c/10780010/c1fc7a275f63/materials-17-00171-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104c/10780010/e2428df4f19e/materials-17-00171-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104c/10780010/7f228b76208f/materials-17-00171-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104c/10780010/de9308117bf7/materials-17-00171-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104c/10780010/062362ae427f/materials-17-00171-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104c/10780010/19326e01783b/materials-17-00171-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104c/10780010/9afbd7acffdf/materials-17-00171-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104c/10780010/1aad2d3a4fc1/materials-17-00171-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104c/10780010/cf2dbab9c71a/materials-17-00171-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104c/10780010/c1fc7a275f63/materials-17-00171-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104c/10780010/e2428df4f19e/materials-17-00171-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104c/10780010/7f228b76208f/materials-17-00171-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104c/10780010/de9308117bf7/materials-17-00171-g009.jpg

相似文献

[1]
Low-Temperature Plasmas Improving Chemical and Cellular Properties of Poly (Ether Ether Ketone) Biomaterial for Biomineralization.

Materials (Basel). 2023-12-28

[2]
Facile Surface Modification Method for Synergistically Enhancing the Biocompatibility and Bioactivity of Poly(ether ether ketone) That Induced Osteodifferentiation.

ACS Appl Mater Interfaces. 2019-7-23

[3]
Surface modification of polyether ether ketone implant with a novel nanocomposite coating containing poly (vinylidene fluoride) toward improving piezoelectric and bioactivity performance.

Colloids Surf B Biointerfaces. 2023-2

[4]
Immobilization of polyphosphoesters on poly(ether ether ketone) (PEEK) for facilitating mineral coating.

J Biomater Sci Polym Ed. 2019-5-11

[5]
Mechanical and biological characteristics of diamond-like carbon coated poly aryl-ether-ether-ketone.

Biomaterials. 2010-8-7

[6]
Surface plasma treatment and phosphorylation enhance the biological performance of poly(ether ether ketone).

Colloids Surf B Biointerfaces. 2018-9-14

[7]
Tailoring of poly(ether ether ketone) surface properties via surface-initiated atom transfer radical polymerization.

Langmuir. 2009-6-2

[8]
Surface modification of Polyether-ether-ketone for enhanced cell response: a chemical etching approach.

Front Bioeng Biotechnol. 2023-9-7

[9]
Comparison of osteogenic potential of poly-ether-ether-ketone with titanium-coated poly-ether-ether-ketone and titanium-blended poly-ether-ether-ketone: An study.

J Indian Prosthodont Soc. 2017

[10]
Effect of Extreme Ultraviolet (EUV) Radiation and EUV Induced, N and O Based Plasmas on a PEEK Surface's Physico-Chemical Properties and MG63 Cell Adhesion.

Int J Mol Sci. 2021-8-6

引用本文的文献

[1]
Polyetheretherketone Double Functionalization with Bioactive Peptides Improves Human Osteoblast Response.

Biomimetics (Basel). 2024-12-17

[2]
Synthesis of Heterostructured TiO Nanopores/Nanotubes by Anodizing at High Voltages.

Materials (Basel). 2024-7-6

[3]
Cold Plasma Technology Based Eco-Friendly Food Packaging Biomaterials.

Polymers (Basel). 2024-1-14

本文引用的文献

[1]
Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems.

ACS Biomater Sci Eng. 2023-9-11

[2]
Recent Developments in Polymer Nanocomposites for Bone Regeneration.

Int J Mol Sci. 2023-2-7

[3]
Green Hydrogels Composed of Sodium Mannuronate/Guluronate, Gelatin and Biointeractive Calcium Silicates/Dicalcium Phosphate Dihydrate Designed for Oral Bone Defects Regeneration.

Nanomaterials (Basel). 2021-12-18

[4]
Surface Modification of Poly(lactic acid) Film via Cold Plasma Assisted Grafting of Fumaric and Ascorbic Acid.

Polymers (Basel). 2021-10-28

[5]
Fracture fixation in extremity trauma with carbon fiber-reinforced polyetheretherketone (CFR-PEEK) plates: evidence today.

Eur J Trauma Emerg Surg. 2022-6

[6]
Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds.

Bioact Mater. 2021-4-22

[7]
Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis.

J Mater Sci Mater Med. 2020-8-20

[8]
Polyaniline-coated titanium oxide nanoparticles and simvastatin-loaded poly(ε-caprolactone) composite nanofibers scaffold for bone tissue regeneration application.

Colloids Surf B Biointerfaces. 2020-4-25

[9]
Biomimetic mineralization of nanocrystalline hydroxyapatites on aminated modified polylactic acid microspheres to develop a novel drug delivery system for alendronate.

Mater Sci Eng C Mater Biol Appl. 2020-1-8

[10]
Modularly engineered alginate bioconjugate hydrogel as biocompatible injectable scaffold for in situ biomineralization.

Carbohydr Polym. 2020-1-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索