Li Xuan, Teschner Detre, Streibel Verena, Lunkenbein Thomas, Masliuk Liudmyla, Fu Teng, Wang Yuanqing, Jones Travis, Seitz Friedrich, Girgsdies Frank, Rosowski Frank, Schlögl Robert, Trunschke Annette
Department of Inorganic Chemistry , Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , 14195 Berlin , Germany . Email:
UniCat-BASF Joint Lab , Technische Universität Berlin , Sekr. EW K 01, Hardenbergstraße 36 , 10623 Berlin , Germany.
Chem Sci. 2018 Dec 20;10(8):2429-2443. doi: 10.1039/c8sc04641g. eCollection 2019 Feb 28.
The well-defined particle morphology of crystalline MnWO catalysts investigated in the present study facilitates obtaining insight into the origin of selectivity limitations in alkane oxidation. Hydrothermal synthesis at variable pH values granted access to a series of phase-pure MnWO catalysts with particles ranging from cube-like (aspect ratio 1.5) to rod- or needle-like (aspect ratio 6.8) shapes. Kinetic studies reveal a strong dependence of the propane consumption rate on the particle shape. The true origin of the structure sensitivity was unraveled by comprehensive bulk and surface analysis using nitrogen adsorption, XRD, SEM, ADF-STEM, STEM-EELS, XPS, multi-laser excitation Raman and DRIFT/operando FTIR spectroscopies, temperature-programmed oxidation (TPO), NEXAFS, and DFT calculations. The active phase is composed of a thin manganese oxy-hydroxide layer formed on the surface of crystalline MnWO The differences in catalytic performance within the series clearly illustrate that the structural motif as the most popular descriptor in oxidation catalysis is not essential, since all MnWO catalysts in the series under study exhibit the same bulk crystal structure and bulk chemical composition and are phase pure and homogenous. The variable particle shape serves as a proxy that reflects the formation of varying abundance of redox active Mn/Mn surface sites, which correlates with catalytic activity. Operando FTIR spectroscopy directly confirms the formation of Mn-OH surface species by abstraction of hydrogen atoms from the propane molecule on nucleophilic oxygen atoms and suggests that active site regeneration occurs oxidative dehydrogenation of Mn-OH species indicating a single-site nature of the active sites that does not allow four-electron reduction of molecular oxygen. Instead, intermediates are created that cause side reactions and lower the selectivity. The findings highlight fundamental design criteria that may be applied to advance the development of new alkane oxidation catalysts with improved selectivity.
本研究中所研究的结晶态MnWO催化剂具有明确的颗粒形态,这有助于深入了解烷烃氧化中选择性限制的起源。在不同pH值下进行水热合成,得到了一系列相纯的MnWO催化剂,其颗粒形状从立方状(长宽比1.5)到棒状或针状(长宽比6.8)不等。动力学研究表明,丙烷消耗速率强烈依赖于颗粒形状。通过使用氮气吸附、XRD、SEM、ADF-STEM、STEM-EELS、XPS、多激光激发拉曼光谱和DRIFT/原位FTIR光谱、程序升温氧化(TPO)、NEXAFS和DFT计算等综合的体相和表面分析,揭示了结构敏感性的真正起源。活性相由在结晶态MnWO表面形成的一层薄的羟基氧化锰层组成。该系列中催化性能的差异清楚地表明,作为氧化催化中最常用描述符的结构基序并非必不可少,因为所研究系列中的所有MnWO催化剂都具有相同的体相晶体结构和体相化学成分,并且是相纯且均匀的。可变的颗粒形状作为一个指标,反映了氧化还原活性Mn/Mn表面位点不同丰度的形成,这与催化活性相关。原位FTIR光谱直接证实了通过丙烷分子上的氢原子在亲核氧原子上的夺取而形成Mn-OH表面物种,并表明活性位点再生是通过Mn-OH物种的氧化脱氢发生的,这表明活性位点具有单中心性质,不允许分子氧进行四电子还原。相反,会生成导致副反应并降低选择性的中间体。这些发现突出了一些基本的设计标准,可用于推动具有更高选择性的新型烷烃氧化催化剂的开发。