Suppr超能文献

日本临床分离株中氟喹诺酮耐药性的流行情况及机制

Prevalence and mechanism of fluoroquinolone resistance in clinical isolates of in Japan.

作者信息

Nakano Ryuichi, Nakano Akiyo, Abe Michiko, Nagano Noriyuki, Asahara Miwa, Furukawa Taiji, Ono Yasuo, Yano Hisakazu, Okamoto Ryoichi

机构信息

Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Nara, Japan.

Department of Medical Laboratory Sciences, Kitasato University School of Allied Health Sciences, Sagamihara, Kanagawa, Japan.

出版信息

Heliyon. 2019 Mar 2;5(3):e01291. doi: 10.1016/j.heliyon.2019.e01291. eCollection 2019 Mar.

Abstract

Fluoroquinolone (FQ) and cephalosporin (CEP) resistance among Enterobacteriaceae has been increasingly reported. FQ resistance occurs primarily through mutations in DNA gyrase ( and ) and topoisomerase IV ( and ). CEP resistance in Enterobacteriaceae is mainly due to the production of CTX-M type extended-spectrum β-lactamases. Although prevalence and mechanisms of FQ and CEP resistance in Enterobacteriaceae such as have been well studied, little is known about in Japan. In this study, we assessed the prevalence and mechanism of FQ resistance in Japanese clinical isolates of . We collected 5845 isolates from eight hospitals between 2000 and 2013. Prevalence of FQ resistance was calculated as the annual average percentage of all isolates. We selected 50 isolates exhibiting susceptibility, intermediate resistance, or resistance to levofloxacin (LVX) and identified amino acid substitutions in GyrA, GyrB, ParC, and ParE. The prevalence of FQ-resistant gradually increased from 2001 to 2004, reaching 16.6% in 2005, and has remained relatively high (13.3-17.5%) since then. Low-level LVX-resistant strains (MIC, 8-16 mg/L) showed significant changes in GyrB (S464Y or -I, or E466D). High-level LVX-resistant strains (MIC, 32-128 mg/L) displayed significant changes in GyrA (E87K) and ParE (D420N). The highest-level LVX-resistant strains (MIC, ≥ 256 mg/L) presented significant changes in GyrA (E87K or -G), GyrB (S464I or -F), and ParE (D420N). Our findings suggest that substitutions in GyrA (E87) and ParE (D420) have played an important role in the emergence of high-level LVX-resistant isolates (MIC, ≥ 32 mg/L) in Japan.

摘要

肠杆菌科细菌对氟喹诺酮(FQ)和头孢菌素(CEP)的耐药性报道日益增多。FQ耐药主要通过DNA促旋酶(gyrA和gyrB)及拓扑异构酶IV(parC和parE)的突变产生。肠杆菌科细菌对CEP的耐药主要归因于CTX-M型超广谱β-内酰胺酶的产生。尽管诸如大肠杆菌等肠杆菌科细菌对FQ和CEP耐药的流行情况及机制已得到充分研究,但在日本对肺炎克雷伯菌的相关情况却知之甚少。在本研究中,我们评估了日本临床分离的肺炎克雷伯菌对FQ的耐药流行情况及机制。我们在2000年至2013年间从八家医院收集了5845株肺炎克雷伯菌分离株。FQ耐药的流行率以所有肺炎克雷伯菌分离株的年度平均百分比计算。我们选择了50株对左氧氟沙星(LVX)表现出敏感、中介耐药或耐药的分离株,并鉴定了GyrA、GyrB、ParC和ParE中的氨基酸替代情况。肺炎克雷伯菌对FQ耐药的流行率从2001年至2004年逐渐上升,2005年达到16.6%,此后一直保持相对较高水平(13.3 - 17.5%)。低水平LVX耐药菌株(MIC,8 - 16 mg/L)在GyrB中出现显著变化(S464Y或 -I,或E466D)。高水平LVX耐药菌株(MIC,32 - 128 mg/L)在GyrA(E87K)和ParE(D420N)中出现显著变化。最高水平LVX耐药菌株(MIC,≥ 256 mg/L)在GyrA(E87K或 -G)、GyrB(S464I或 -F)和ParE(D420N)中出现显著变化。我们的研究结果表明,GyrA(E87)和ParE(D420)中的替代在日本高水平LVX耐药肺炎克雷伯菌分离株(MIC,≥ 32 mg/L)的出现中起了重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b7/6403068/0575df311091/gr1.jpg

相似文献

1
Prevalence and mechanism of fluoroquinolone resistance in clinical isolates of in Japan.
Heliyon. 2019 Mar 2;5(3):e01291. doi: 10.1016/j.heliyon.2019.e01291. eCollection 2019 Mar.
2
Role of type II topoisomerase mutations and AcrAB efflux pump in fluoroquinolone-resistant clinical isolates of Proteus mirabilis.
J Antimicrob Chemother. 2006 Sep;58(3):673-7. doi: 10.1093/jac/dkl297. Epub 2006 Jul 26.
3
DNA Gyrase and Topoisomerase IV Mutations and their effect on Quinolones Resistant among UTIs Patients.
Pak J Med Sci. 2020 Sep-Oct;36(6):1234-1240. doi: 10.12669/pjms.36.6.2207.
5
Accumulation of mutations in DNA gyrase and topoisomerase IV genes contributes to fluoroquinolone resistance in Vibrio cholerae O139 strains.
Int J Antimicrob Agents. 2013 Jul;42(1):72-5. doi: 10.1016/j.ijantimicag.2013.03.004. Epub 2013 May 1.
8
Geographic distribution of fluoroquinolone-resistant Escherichia coli strains in Asia.
Int J Antimicrob Agents. 2010 Apr;35(4):387-91. doi: 10.1016/j.ijantimicag.2009.12.005.
9
Substitutions of Ser83Leu in GyrA and Ser80Leu in ParC Associated with Quinolone Resistance in Acinetobacter pittii.
Microb Drug Resist. 2015 Jun;21(3):345-51. doi: 10.1089/mdr.2014.0057. Epub 2014 Dec 16.

引用本文的文献

2
First Report of CTX-M-32 and CTX-M-101 in from Zagreb, Croatia.
Antibiotics (Basel). 2025 Apr 30;14(5):462. doi: 10.3390/antibiotics14050462.
3
Three simple and cost-effective assays for AAC(6')-Ib-cr enzyme activity.
Front Microbiol. 2025 Apr 25;16:1513425. doi: 10.3389/fmicb.2025.1513425. eCollection 2025.
4
DNA Gyrase and Topoisomerase IV Mutations and their effect on Quinolones Resistant among UTIs Patients.
Pak J Med Sci. 2020 Sep-Oct;36(6):1234-1240. doi: 10.12669/pjms.36.6.2207.

本文引用的文献

2
The emerging threat of multidrug-resistant Gram-negative bacteria in urology.
Nat Rev Urol. 2015 Oct;12(10):570-84. doi: 10.1038/nrurol.2015.199. Epub 2015 Sep 1.
4
Distribution and antimicrobial susceptibility profile of extended-spectrum β-lactamase-producing Proteus mirabilis strains recently isolated in Japan.
Int J Antimicrob Agents. 2015 Feb;45(2):113-8. doi: 10.1016/j.ijantimicag.2014.06.005. Epub 2014 Aug 11.
5
Antibiotic consumption and its influence on the resistance in Enterobacteriaceae.
BMC Res Notes. 2014 Jul 16;7:454. doi: 10.1186/1756-0500-7-454.
6
Rapid assay for detecting gyrA and parC mutations associated with fluoroquinolone resistance in Enterobacteriaceae.
J Microbiol Methods. 2013 Sep;94(3):213-6. doi: 10.1016/j.mimet.2013.06.019. Epub 2013 Jun 28.
7
Regional outbreak of CTX-M-2 β-lactamase-producing Proteus mirabilis in Japan.
J Med Microbiol. 2012 Dec;61(Pt 12):1727-1735. doi: 10.1099/jmm.0.049726-0. Epub 2012 Aug 30.
8
Fourteen years in resistance.
Int J Antimicrob Agents. 2012 Apr;39(4):283-94. doi: 10.1016/j.ijantimicag.2011.12.012. Epub 2012 Mar 3.
9
Genetic features of blaNDM-1-positive Enterobacteriaceae.
Antimicrob Agents Chemother. 2011 Nov;55(11):5403-7. doi: 10.1128/AAC.00585-11. Epub 2011 Aug 22.
10
Rapid detection of qnr and qepA plasmid-mediated quinolone resistance genes using real-time PCR.
Diagn Microbiol Infect Dis. 2011 Jun;70(2):253-9. doi: 10.1016/j.diagmicrobio.2011.01.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验