Department of Bioengineering, University of California, Los Angeles Los Angeles, CA, USA.
Department of Bioengineering, University of California, Los Angeles Los Angeles, CA, USA ; Department of Radiation Oncology, University of California, Los Angeles Los Angeles, CA, USA.
Front Neurosci. 2014 Jun 23;8:163. doi: 10.3389/fnins.2014.00163. eCollection 2014.
Despite considerable effort to remove it, the ballistocardiogram (BCG) remains a major artifact in electroencephalographic data (EEG) acquired inside magnetic resonance imaging (MRI) scanners, particularly in continuous (as opposed to event-related) recordings. In this study, we have developed a new Direct Recording Prior Encoding (DRPE) method to extract and separate the BCG and EEG components from contaminated signals, and have demonstrated its performance by comparing it quantitatively to the popular Optimal Basis Set (OBS) method. Our modified recording configuration allows us to obtain representative bases of the BCG- and EEG-only signals. Further, we have developed an optimization-based reconstruction approach to maximally incorporate prior knowledge of the BCG/EEG subspaces, and of the signal characteristics within them. Both OBS and DRPE methods were tested with experimental data, and compared quantitatively using cross-validation. In the challenging continuous EEG studies, DRPE outperforms the OBS method by nearly sevenfold in separating the continuous BCG and EEG signals.
尽管已经付出了相当大的努力来去除它,但心冲击图(BCG)仍然是磁共振成像(MRI)扫描仪内获取的脑电图(EEG)数据中的主要伪影,特别是在连续(相对于事件相关)记录中。在这项研究中,我们开发了一种新的直接记录先验编码(DRPE)方法,从污染信号中提取和分离 BCG 和 EEG 分量,并通过将其与流行的最优基集(OBS)方法进行定量比较来证明其性能。我们修改后的记录配置允许我们获得 BCG 和 EEG 信号的代表性基。此外,我们还开发了一种基于优化的重建方法,以最大限度地利用 BCG/EEG 子空间以及其中信号特征的先验知识。OBS 和 DRPE 方法都使用实验数据进行了测试,并使用交叉验证进行了定量比较。在具有挑战性的连续 EEG 研究中,DRPE 在分离连续 BCG 和 EEG 信号方面的性能比 OBS 方法高出近七倍。