Suppr超能文献

交联丝束和鞭毛的反弯动力学。

The counterbend dynamics of cross-linked filament bundles and flagella.

作者信息

Coy Rachel, Gadêlha Hermes

机构信息

CoMPLEX, University College London, London WC1E 6BT, UK.

Department of Mathematics, University of York, York YO10 SDD, UK

出版信息

J R Soc Interface. 2017 May;14(130). doi: 10.1098/rsif.2017.0065.

Abstract

Cross-linked filament bundles, such as in cilia and flagella, are ubiquitous in biology. They are considered in textbooks as simple filaments with larger stiffness. Recent observations of flagellar counterbend, however, show that induction of curvature in one section of a passive flagellum instigates a compensatory counter-curvature elsewhere, exposing the intricate role of the diminutive cross-linking proteins at large scales. We show that this effect, a material property of the cross-linking mechanics, modifies the bundle dynamics and induces a bimodal - length-dependent material response that departs from the Euler-Bernoulli theory. Hence, the use of simpler theories to analyse experiments can result in paradoxical interpretations. Remarkably, the counterbend dynamics instigates counter-waves in opposition to driven oscillations in distant parts of the bundle, with potential impact on the regulation of flagellar bending waves. These results have a range of physical and biological applications, including the empirical disentanglement of material quantities via counterbend dynamics.

摘要

交联丝束,如存在于纤毛和鞭毛中的丝束,在生物学中无处不在。在教科书中,它们被视为具有较大刚度的简单细丝。然而,最近对鞭毛反向弯曲的观察表明,被动鞭毛某一部位的曲率诱导会在其他部位引发补偿性的反向曲率,揭示了微小交联蛋白在大尺度上的复杂作用。我们表明,这种效应作为交联力学的一种材料特性,改变了丝束动力学,并诱导出一种双峰的、长度依赖性的材料响应,这与欧拉 - 伯努利理论不同。因此,使用更简单的理论来分析实验可能会导致矛盾的解释。值得注意的是,反向弯曲动力学在丝束远处引发与驱动振荡相反的反向波,这可能对鞭毛弯曲波的调节产生影响。这些结果具有一系列物理和生物学应用,包括通过反向弯曲动力学对材料量进行实证解缠。

相似文献

2
The counterbend phenomenon in flagellar axonemes and cross-linked filament bundles.鞭毛轴丝和交联丝束中的反弯现象。
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12180-5. doi: 10.1073/pnas.1302113110. Epub 2013 Jul 3.
3
Flagellar movement: a sliding filament model.鞭毛运动:一种滑行丝模型。
Science. 1972 Nov 3;178(4060):455-62. doi: 10.1126/science.178.4060.455.
4
Load Response of the Flagellar Beat.鞭毛摆动的负载响应
Phys Rev Lett. 2016 Dec 16;117(25):258101. doi: 10.1103/PhysRevLett.117.258101. Epub 2016 Dec 14.
6
Contractile mechanisms in flagella.鞭毛中的收缩机制。
Biophys J. 1971 May;11(5):446-63. doi: 10.1016/S0006-3495(71)86227-6.
7
Nonlinear dynamics of cilia and flagella.纤毛和鞭毛的非线性动力学
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 1):051918. doi: 10.1103/PhysRevE.79.051918. Epub 2009 May 21.
8
Mesoscopic modeling of bacterial flagellar microhydrodynamics.细菌鞭毛微流体动力学的介观建模。
Biophys J. 2006 Nov 15;91(10):3640-52. doi: 10.1529/biophysj.106.091314. Epub 2006 Aug 25.

引用本文的文献

6
Cilia oscillations.纤毛摆动。
Philos Trans R Soc Lond B Biol Sci. 2020 Feb 17;375(1792):20190157. doi: 10.1098/rstb.2019.0157. Epub 2019 Dec 30.
7
Instability-driven oscillations of elastic microfilaments.弹性微丝的不稳定性驱动的振荡。
J R Soc Interface. 2018 Dec 21;15(149):20180594. doi: 10.1098/rsif.2018.0594.

本文引用的文献

1
Nonlinear amplitude dynamics in flagellar beating.鞭毛摆动中的非线性振幅动力学。
R Soc Open Sci. 2017 Mar 8;4(3):160698. doi: 10.1098/rsos.160698. eCollection 2017 Mar.
2
Identification of internal properties of fibres and micro-swimmers.纤维和微型游动器内部特性的识别。
Proc Math Phys Eng Sci. 2017 Jan;473(2197):20160517. doi: 10.1098/rspa.2016.0517.
5
Coordinated beating of algal flagella is mediated by basal coupling.藻类鞭毛的协同摆动由基部耦合介导。
Proc Natl Acad Sci U S A. 2016 May 17;113(20):E2784-93. doi: 10.1073/pnas.1518527113. Epub 2016 May 2.
10
The counterbend phenomenon in flagellar axonemes and cross-linked filament bundles.鞭毛轴丝和交联丝束中的反弯现象。
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12180-5. doi: 10.1073/pnas.1302113110. Epub 2013 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验