Suppr超能文献

利用CRISPR-Cas13进行RNA靶向

RNA targeting with CRISPR-Cas13.

作者信息

Abudayyeh Omar O, Gootenberg Jonathan S, Essletzbichler Patrick, Han Shuo, Joung Julia, Belanto Joseph J, Verdine Vanessa, Cox David B T, Kellner Max J, Regev Aviv, Lander Eric S, Voytas Daniel F, Ting Alice Y, Zhang Feng

机构信息

Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.

McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts 02139, USA.

出版信息

Nature. 2017 Oct 12;550(7675):280-284. doi: 10.1038/nature24049. Epub 2017 Oct 4.

Abstract

RNA has important and diverse roles in biology, but molecular tools to manipulate and measure it are limited. For example, RNA interference can efficiently knockdown RNAs, but it is prone to off-target effects, and visualizing RNAs typically relies on the introduction of exogenous tags. Here we demonstrate that the class 2 type VI RNA-guided RNA-targeting CRISPR-Cas effector Cas13a (previously known as C2c2) can be engineered for mammalian cell RNA knockdown and binding. After initial screening of 15 orthologues, we identified Cas13a from Leptotrichia wadei (LwaCas13a) as the most effective in an interference assay in Escherichia coli. LwaCas13a can be heterologously expressed in mammalian and plant cells for targeted knockdown of either reporter or endogenous transcripts with comparable levels of knockdown as RNA interference and improved specificity. Catalytically inactive LwaCas13a maintains targeted RNA binding activity, which we leveraged for programmable tracking of transcripts in live cells. Our results establish CRISPR-Cas13a as a flexible platform for studying RNA in mammalian cells and therapeutic development.

摘要

RNA在生物学中具有重要且多样的作用,但用于操纵和测量RNA的分子工具却很有限。例如,RNA干扰能够有效地敲低RNA,但它容易产生脱靶效应,并且可视化RNA通常依赖于引入外源标签。在此,我们证明了2类VI型RNA引导的RNA靶向CRISPR-Cas效应蛋白Cas13a(以前称为C2c2)可被改造用于哺乳动物细胞中的RNA敲低和结合。在对15种直系同源物进行初步筛选后,我们确定来自韦氏纤毛菌的Cas13a(LwaCas13a)在大肠杆菌的干扰试验中最为有效。LwaCas13a能够在哺乳动物和植物细胞中异源表达,用于靶向敲低报告基因或内源性转录本,其敲低水平与RNA干扰相当,且特异性有所提高。催化失活的LwaCas13a保持靶向RNA结合活性,我们利用这一特性在活细胞中对转录本进行可编程追踪。我们的结果确立了CRISPR-Cas13a作为研究哺乳动物细胞中RNA和治疗开发的灵活平台。

相似文献

1
RNA targeting with CRISPR-Cas13.
Nature. 2017 Oct 12;550(7675):280-284. doi: 10.1038/nature24049. Epub 2017 Oct 4.
2
CRISPR-Cas13 Inhibitors Block RNA Editing in Bacteria and Mammalian Cells.
Mol Cell. 2020 Jun 4;78(5):850-861.e5. doi: 10.1016/j.molcel.2020.03.033. Epub 2020 Apr 28.
3
Programmable RNA targeting with the single-protein CRISPR effector Cas7-11.
Nature. 2021 Sep;597(7878):720-725. doi: 10.1038/s41586-021-03886-5. Epub 2021 Sep 6.
4
C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector.
Science. 2016 Aug 5;353(6299):aaf5573. doi: 10.1126/science.aaf5573. Epub 2016 Jun 2.
5
tRNA anticodon cleavage by target-activated CRISPR-Cas13a effector.
Sci Adv. 2024 Apr 26;10(17):eadl0164. doi: 10.1126/sciadv.adl0164. Epub 2024 Apr 24.
6
Structural basis for self-cleavage prevention by tag:anti-tag pairing complementarity in type VI Cas13 CRISPR systems.
Mol Cell. 2021 Mar 4;81(5):1100-1115.e5. doi: 10.1016/j.molcel.2020.12.033. Epub 2021 Jan 19.
7
The Bacterial Enzyme Cas13 Interferes with Neurite Outgrowth from Cultured Cortical Neurons.
Toxins (Basel). 2021 Apr 7;13(4):262. doi: 10.3390/toxins13040262.
8
Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems.
J Mol Biol. 2019 Jan 4;431(1):66-87. doi: 10.1016/j.jmb.2018.06.029. Epub 2018 Jun 22.
9
Lack of Cas13a inhibition by anti-CRISPR proteins from Leptotrichia prophages.
Mol Cell. 2022 Jun 2;82(11):2161-2166.e3. doi: 10.1016/j.molcel.2022.05.002. Epub 2022 May 26.
10
Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28.
Mol Cell. 2017 Feb 16;65(4):618-630.e7. doi: 10.1016/j.molcel.2016.12.023. Epub 2017 Jan 5.

引用本文的文献

1
Long Non-coding RNA Based Therapy for Cardiovascular Disease.
J Cardiovasc Transl Res. 2025 Sep 3. doi: 10.1007/s12265-025-10686-z.
3
CRISPR tools for T cells: targeting the genome, epigenome, and transcriptome.
Trends Cancer. 2025 Aug 28. doi: 10.1016/j.trecan.2025.08.001.
4
RNA Therapeutics: Bridging Discovery and Clinical Implementation.
Methods Mol Biol. 2025;2965:1-37. doi: 10.1007/978-1-0716-4742-4_1.
6
CRISPR/Cas-Mediated Optimization of Soybean Shoot Architecture for Enhanced Yield.
Int J Mol Sci. 2025 Aug 16;26(16):7925. doi: 10.3390/ijms26167925.
8
CRISPR/Cas9 a genomic engineering technology for treatment in ALS mouse models.
Regen Ther. 2025 Aug 13;30:575-583. doi: 10.1016/j.reth.2025.07.009. eCollection 2025 Dec.
9
Towards the elimination of infectious HPV: exploiting CRISPR/Cas innovations.
Front Cell Infect Microbiol. 2025 Aug 4;15:1627668. doi: 10.3389/fcimb.2025.1627668. eCollection 2025.

本文引用的文献

1
Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening.
Nat Protoc. 2017 Apr;12(4):828-863. doi: 10.1038/nprot.2017.016. Epub 2017 Mar 23.
2
Diversity and evolution of class 2 CRISPR-Cas systems.
Nat Rev Microbiol. 2017 Mar;15(3):169-182. doi: 10.1038/nrmicro.2016.184. Epub 2017 Jan 23.
3
Ageing, neurodegeneration and brain rejuvenation.
Nature. 2016 Nov 10;539(7628):180-186. doi: 10.1038/nature20411.
4
Principles and Properties of Stress Granules.
Trends Cell Biol. 2016 Sep;26(9):668-679. doi: 10.1016/j.tcb.2016.05.004. Epub 2016 Jun 9.
5
C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector.
Science. 2016 Aug 5;353(6299):aaf5573. doi: 10.1126/science.aaf5573. Epub 2016 Jun 2.
6
Programmable RNA Tracking in Live Cells with CRISPR/Cas9.
Cell. 2016 Apr 7;165(2):488-96. doi: 10.1016/j.cell.2016.02.054. Epub 2016 Mar 17.
7
Human RNase L tunes gene expression by selectively destabilizing the microRNA-regulated transcriptome.
Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):15916-21. doi: 10.1073/pnas.1513034112. Epub 2015 Dec 14.
8
Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems.
Mol Cell. 2015 Nov 5;60(3):385-97. doi: 10.1016/j.molcel.2015.10.008. Epub 2015 Oct 22.
9
Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease.
Nat Biotechnol. 2015 Nov;33(11):1159-61. doi: 10.1038/nbt.3390.
10
In vivo genome editing using Staphylococcus aureus Cas9.
Nature. 2015 Apr 9;520(7546):186-91. doi: 10.1038/nature14299. Epub 2015 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验