Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA.
Allen Discovery Center for Cell Lineage Tracing, Seattle, Washington, USA.
Nat Biotechnol. 2018 Jun;36(5):442-450. doi: 10.1038/nbt.4103. Epub 2018 Mar 28.
The lineage relationships among the hundreds of cell types generated during development are difficult to reconstruct. A recent method, GESTALT, used CRISPR-Cas9 barcode editing for large-scale lineage tracing, but was restricted to early development and did not identify cell types. Here we present scGESTALT, which combines the lineage recording capabilities of GESTALT with cell-type identification by single-cell RNA sequencing. The method relies on an inducible system that enables barcodes to be edited at multiple time points, capturing lineage information from later stages of development. Sequencing of ∼60,000 transcriptomes from the juvenile zebrafish brain identified >100 cell types and marker genes. Using these data, we generate lineage trees with hundreds of branches that help uncover restrictions at the level of cell types, brain regions, and gene expression cascades during differentiation. scGESTALT can be applied to other multicellular organisms to simultaneously characterize molecular identities and lineage histories of thousands of cells during development and disease.
在发育过程中产生的数百种细胞类型之间的谱系关系很难重建。最近的一种方法 GESTALT 使用 CRISPR-Cas9 条形码编辑进行大规模谱系追踪,但仅限于早期发育,并且无法识别细胞类型。在这里,我们提出了 scGESTALT,它将 GESTALT 的谱系记录能力与单细胞 RNA 测序的细胞类型鉴定相结合。该方法依赖于一种诱导系统,该系统能够在多个时间点编辑条形码,从而捕获来自发育后期的谱系信息。对幼年斑马鱼大脑的约 60,000 个转录组进行测序,鉴定出 >100 种细胞类型和标记基因。使用这些数据,我们生成了数百个分支的谱系树,有助于揭示在分化过程中细胞类型、脑区和基因表达级联的水平上的限制。scGESTALT 可应用于其他多细胞生物,以在发育和疾病过程中同时表征数千个细胞的分子特征和谱系历史。