Suppr超能文献

微生物组代谢物介导的特定物种增强的肠出血性大肠杆菌发病机制。

Species-specific enhancement of enterohemorrhagic E. coli pathogenesis mediated by microbiome metabolites.

机构信息

Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.

Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland.

出版信息

Microbiome. 2019 Mar 20;7(1):43. doi: 10.1186/s40168-019-0650-5.

Abstract

BACKGROUND

Species-specific differences in tolerance to infection are exemplified by the high susceptibility of humans to enterohemorrhagic Escherichia coli (EHEC) infection, whereas mice are relatively resistant to this pathogen. This intrinsic species-specific difference in EHEC infection limits the translation of murine research to human. Furthermore, studying the mechanisms underlying this differential susceptibility is a difficult problem due to complex in vivo interactions between the host, pathogen, and disparate commensal microbial communities.

RESULTS

We utilize organ-on-a-chip (Organ Chip) microfluidic culture technology to model damage of the human colonic epithelium induced by EHEC infection, and show that epithelial injury is greater when exposed to metabolites derived from the human gut microbiome compared to mouse. Using a multi-omics approach, we discovered four human microbiome metabolites-4-methyl benzoic acid, 3,4-dimethylbenzoic acid, hexanoic acid, and heptanoic acid-that are sufficient to mediate this effect. The active human microbiome metabolites preferentially induce expression of flagellin, a bacterial protein associated with motility of EHEC and increased epithelial injury. Thus, the decreased tolerance to infection observed in humans versus other species may be due in part to the presence of compounds produced by the human intestinal microbiome that actively promote bacterial pathogenicity.

CONCLUSION

Organ-on-chip technology allowed the identification of specific human microbiome metabolites modulating EHEC pathogenesis. These identified metabolites are sufficient to increase susceptibility to EHEC in our human Colon Chip model and they contribute to species-specific tolerance. This work suggests that higher concentrations of these metabolites could be the reason for higher susceptibility to EHEC infection in certain human populations, such as children. Furthermore, this research lays the foundation for therapeutic-modulation of microbe products in order to prevent and treat human bacterial infection.

摘要

背景

物种对感染的耐受性存在特异性差异,例如人类极易感染肠出血性大肠杆菌(EHEC),而小鼠对此病原体相对具有抵抗力。EHEC 感染的这种固有物种特异性差异限制了将小鼠研究转化为人类研究。此外,由于宿主、病原体和不同共生微生物群落之间复杂的体内相互作用,研究导致这种易感性差异的机制是一个难题。

结果

我们利用器官芯片(Organ Chip)微流控培养技术来模拟 EHEC 感染引起的人结肠上皮损伤,并表明与来自小鼠的代谢物相比,暴露于源自人类肠道微生物组的代谢物时,上皮损伤更大。通过多组学方法,我们发现了四种人类微生物组代谢物-4-甲基苯甲酸、3,4-二甲基苯甲酸、己酸和庚酸-它们足以介导这种作用。这些活跃的人类微生物组代谢物优先诱导鞭毛蛋白的表达,鞭毛蛋白是与 EHEC 运动性和上皮损伤增加相关的细菌蛋白。因此,与其他物种相比,人类对感染的耐受性降低可能部分是由于人类肠道微生物组产生的化合物的存在,这些化合物积极促进了细菌的致病性。

结论

器官芯片技术允许鉴定出调节 EHEC 发病机制的特定人类微生物组代谢物。这些鉴定出的代谢物足以增加我们的人结肠芯片模型中对 EHEC 的易感性,并且它们导致了物种特异性的耐受性。这项工作表明,在某些人类群体(如儿童)中,这些代谢物的浓度更高可能是对 EHEC 感染易感性更高的原因。此外,这项研究为治疗性调节微生物产物奠定了基础,以预防和治疗人类细菌感染。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cce2/6425591/f1da58cf53ed/40168_2019_650_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验