Suppr超能文献

基于稀疏形状先验和动态遮挡约束的胶质母细胞瘤病理图像有效细胞核分割

Effective nuclei segmentation with sparse shape prior and dynamic occlusion constraint for glioblastoma pathology images.

作者信息

Zhang Pengyue, Wang Fusheng, Teodoro George, Liang Yanhui, Roy Mousumi, Brat Daniel, Kong Jun

机构信息

Stony Brook University, Department of Computer Science, Stony Brook, New York, United States.

Stony Brook University, Department of Biomedical Informatics and Computer Science, Stony Brook, New York, United States.

出版信息

J Med Imaging (Bellingham). 2019 Jan;6(1):017502. doi: 10.1117/1.JMI.6.1.017502. Epub 2019 Mar 14.

Abstract

We propose a segmentation method for nuclei in glioblastoma histopathologic images based on a sparse shape prior guided variational level set framework. By spectral clustering and sparse coding, a set of shape priors is exploited to accommodate complicated shape variations. We automate the object contour initialization by a seed detection algorithm and deform contours by minimizing an energy functional that incorporates a shape term in a sparse shape prior representation, an adaptive contour occlusion penalty term, and a boundary term encouraging contours to converge to strong edges. As a result, our approach is able to deal with mutual occlusions and detect contours of multiple intersected nuclei simultaneously. Our method is applied to several whole-slide histopathologic image datasets for nuclei segmentation. The proposed method is compared with other state-of-the-art methods and demonstrates good accuracy for nuclei detection and segmentation, suggesting its promise to support biomedical image-based investigations.

摘要

我们提出了一种基于稀疏形状先验引导的变分水平集框架的胶质母细胞瘤组织病理学图像细胞核分割方法。通过谱聚类和稀疏编码,利用一组形状先验来适应复杂的形状变化。我们通过种子检测算法自动初始化对象轮廓,并通过最小化一个能量泛函来变形轮廓,该能量泛函包含稀疏形状先验表示中的形状项、自适应轮廓遮挡惩罚项以及鼓励轮廓收敛到强边缘的边界项。结果,我们的方法能够处理相互遮挡并同时检测多个相交细胞核的轮廓。我们的方法应用于几个用于细胞核分割的全切片组织病理学图像数据集。将所提出的方法与其他现有最先进方法进行比较,结果表明该方法在细胞核检测和分割方面具有良好的准确性,显示出其在支持基于生物医学图像的研究方面的前景。

相似文献

1
Effective nuclei segmentation with sparse shape prior and dynamic occlusion constraint for glioblastoma pathology images.
J Med Imaging (Bellingham). 2019 Jan;6(1):017502. doi: 10.1117/1.JMI.6.1.017502. Epub 2019 Mar 14.
2
AUTOMATED LEVEL SET SEGMENTATION OF HISTOPATHOLOGIC CELLS WITH SPARSE SHAPE PRIOR SUPPORT AND DYNAMIC OCCLUSION CONSTRAINT.
Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:718-722. doi: 10.1109/ISBI.2017.7950620. Epub 2017 Jun 19.
3
An integrated region-, boundary-, shape-based active contour for multiple object overlap resolution in histological imagery.
IEEE Trans Med Imaging. 2012 Jul;31(7):1448-60. doi: 10.1109/TMI.2012.2190089. Epub 2012 Apr 5.
4
Selective invocation of shape priors for deformable segmentation and morphologic classification of prostate cancer tissue microarrays.
Comput Med Imaging Graph. 2015 Apr;41:3-13. doi: 10.1016/j.compmedimag.2014.11.001. Epub 2014 Nov 12.
5
Sparse group composition for robust left ventricular epicardium segmentation.
Comput Med Imaging Graph. 2015 Dec;46 Pt 1:56-63. doi: 10.1016/j.compmedimag.2015.06.003. Epub 2015 Jul 3.
6
Contour-Seed Pairs Learning-Based Framework for Simultaneously Detecting and Segmenting Various Overlapping Cells/Nuclei in Microscopy Images.
IEEE Trans Image Process. 2018 Dec;27(12):5759-5774. doi: 10.1109/TIP.2018.2857001. Epub 2018 Jul 18.
7
Myocardium segmentation from DE MRI with guided random walks and sparse shape representation.
Int J Comput Assist Radiol Surg. 2018 Oct;13(10):1579-1590. doi: 10.1007/s11548-018-1817-4. Epub 2018 Jul 7.
8
Fast Cell Segmentation Using Scalable Sparse Manifold Learning and Affine Transform-approximated Active Contour.
Med Image Comput Comput Assist Interv. 2015 Oct;9351:332-339. doi: 10.1007/978-3-319-24574-4_40. Epub 2015 Nov 18.
10
Adaptive energy selective active contour with shape priors for nuclear segmentation and gleason grading of prostate cancer.
Med Image Comput Comput Assist Interv. 2011;14(Pt 1):661-9. doi: 10.1007/978-3-642-23623-5_83.

引用本文的文献

本文引用的文献

1
AUTOMATED LEVEL SET SEGMENTATION OF HISTOPATHOLOGIC CELLS WITH SPARSE SHAPE PRIOR SUPPORT AND DYNAMIC OCCLUSION CONSTRAINT.
Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:718-722. doi: 10.1109/ISBI.2017.7950620. Epub 2017 Jun 19.
2
Robust Cell Segmentation for Histological Images of Glioblastoma.
Proc IEEE Int Symp Biomed Imaging. 2016 Apr;2016:1041-1045. doi: 10.1109/ISBI.2016.7493444. Epub 2016 Jun 16.
3
Automatic Nuclear Segmentation Using Multiscale Radial Line Scanning With Dynamic Programming.
IEEE Trans Biomed Eng. 2017 Oct;64(10):2475-2485. doi: 10.1109/TBME.2017.2649485. Epub 2017 Jan 9.
4
Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines.
Bioinformatics. 2017 Apr 1;33(7):1064-1072. doi: 10.1093/bioinformatics/btw749.
5
An Automatic Learning-Based Framework for Robust Nucleus Segmentation.
IEEE Trans Med Imaging. 2016 Feb;35(2):550-66. doi: 10.1109/TMI.2015.2481436. Epub 2015 Sep 23.
6
An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells.
IEEE Trans Image Process. 2015 Apr;24(4):1261-72. doi: 10.1109/TIP.2015.2389619. Epub 2015 Jan 9.
7
An efficient technique for nuclei segmentation based on ellipse descriptor analysis and improved seed detection algorithm.
IEEE J Biomed Health Inform. 2014 Sep;18(5):1729-41. doi: 10.1109/JBHI.2013.2297030.
8
Automatic Ki-67 counting using robust cell detection and online dictionary learning.
IEEE Trans Biomed Eng. 2014 Mar;61(3):859-70. doi: 10.1109/TBME.2013.2291703.
9
An integrated region-, boundary-, shape-based active contour for multiple object overlap resolution in histological imagery.
IEEE Trans Med Imaging. 2012 Jul;31(7):1448-60. doi: 10.1109/TMI.2012.2190089. Epub 2012 Apr 5.
10
Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set.
IEEE Trans Biomed Eng. 2012 Mar;59(3):754-65. doi: 10.1109/TBME.2011.2179298. Epub 2011 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验