文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能在胶质瘤组织病理学图像分析中的应用:综述

Applications of artificial intelligence in the analysis of histopathology images of gliomas: a review.

作者信息

Redlich Jan-Philipp, Feuerhake Friedrich, Weis Joachim, Schaadt Nadine S, Teuber-Hanselmann Sarah, Buck Christoph, Luttmann Sabine, Eberle Andrea, Nikolin Stefan, Appenzeller Arno, Portmann Andreas, Homeyer André

机构信息

Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Straße 2, 28359, Bremen, Germany.

Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.

出版信息

Npj Imaging. 2024 Jul 1;2(1):16. doi: 10.1038/s44303-024-00020-8.


DOI:10.1038/s44303-024-00020-8
PMID:40603567
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12118767/
Abstract

In recent years, the diagnosis of gliomas has become increasingly complex. Analysis of glioma histopathology images using artificial intelligence (AI) offers new opportunities to support diagnosis and outcome prediction. To give an overview of the current state of research, this review examines 83 publicly available research studies that have proposed AI-based methods for whole-slide histopathology images of human gliomas, covering the diagnostic tasks of subtyping (23/83), grading (27/83), molecular marker prediction (20/83), and survival prediction (29/83). All studies were reviewed with regard to methodological aspects as well as clinical applicability. It was found that the focus of current research is the assessment of hematoxylin and eosin-stained tissue sections of adult-type diffuse gliomas. The majority of studies (52/83) are based on the publicly available glioblastoma and low-grade glioma datasets from The Cancer Genome Atlas (TCGA) and only a few studies employed other datasets in isolation (16/83) or in addition to the TCGA datasets (15/83). Current approaches mostly rely on convolutional neural networks (63/83) for analyzing tissue at 20x magnification (35/83). A new field of research is the integration of clinical data, omics data, or magnetic resonance imaging (29/83). So far, AI-based methods have achieved promising results, but are not yet used in real clinical settings. Future work should focus on the independent validation of methods on larger, multi-site datasets with high-quality and up-to-date clinical and molecular pathology annotations to demonstrate routine applicability.

摘要

近年来,胶质瘤的诊断变得日益复杂。利用人工智能(AI)分析胶质瘤组织病理学图像为支持诊断和预后预测提供了新的机遇。为了概述当前的研究现状,本综述考察了83项公开的研究,这些研究提出了基于AI的方法用于人类胶质瘤的全切片组织病理学图像,涵盖了亚型分类(23/83)、分级(27/83)、分子标志物预测(20/83)和生存预测(29/83)等诊断任务。所有研究都从方法学方面以及临床适用性进行了综述。结果发现,当前研究的重点是对成人型弥漫性胶质瘤苏木精和伊红染色组织切片的评估。大多数研究(52/83)基于来自癌症基因组图谱(TCGA)的公开可用的胶质母细胞瘤和低级别胶质瘤数据集,只有少数研究单独使用其他数据集(16/83)或除TCGA数据集外还使用其他数据集(15/83)。当前方法大多依赖卷积神经网络(63/83)来分析20倍放大倍数的组织(35/83)。一个新的研究领域是临床数据、组学数据或磁共振成像的整合(29/83)。到目前为止,基于AI的方法已经取得了有前景的结果,但尚未应用于实际临床环境。未来的工作应聚焦于在具有高质量和最新临床及分子病理学注释的更大规模多中心数据集上对方法进行独立验证,以证明其常规适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b14f/12118767/288af8365223/44303_2024_20_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b14f/12118767/1d69ea228e07/44303_2024_20_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b14f/12118767/2a44bc6976ca/44303_2024_20_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b14f/12118767/99e19befe34b/44303_2024_20_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b14f/12118767/5643df361c2c/44303_2024_20_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b14f/12118767/d78013885536/44303_2024_20_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b14f/12118767/288af8365223/44303_2024_20_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b14f/12118767/1d69ea228e07/44303_2024_20_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b14f/12118767/2a44bc6976ca/44303_2024_20_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b14f/12118767/99e19befe34b/44303_2024_20_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b14f/12118767/5643df361c2c/44303_2024_20_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b14f/12118767/d78013885536/44303_2024_20_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b14f/12118767/288af8365223/44303_2024_20_Fig6_HTML.jpg

相似文献

[1]
Applications of artificial intelligence in the analysis of histopathology images of gliomas: a review.

Npj Imaging. 2024-7-1

[2]
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.

Cochrane Database Syst Rev. 2018-1-22

[3]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[4]
Home treatment for mental health problems: a systematic review.

Health Technol Assess. 2001

[5]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[6]
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.

JBI Database System Rev Implement Rep. 2016-4

[7]
Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma.

Cochrane Database Syst Rev. 2022-3-2

[8]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[9]
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.

Health Technol Assess. 2024-10

[10]
The effectiveness and cost-effectiveness of carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma: a systematic review and economic evaluation.

Health Technol Assess. 2007-11

本文引用的文献

[1]
Masked pre-training of transformers for histology image analysis.

J Pathol Inform. 2024-5-31

[2]
Towards a general-purpose foundation model for computational pathology.

Nat Med. 2024-3

[3]
A visual-language foundation model for computational pathology.

Nat Med. 2024-3

[4]
A systematic pan-cancer study on deep learning-based prediction of multi-omic biomarkers from routine pathology images.

Commun Med (Lond). 2024-3-15

[5]
Deep Learning Glioma Grading with the Tumor Microenvironment Analysis Protocol for Comprehensive Learning, Discovering, and Quantifying Microenvironmental Features.

J Imaging Inform Med. 2024-8

[6]
A multi-class brain tumor grading system based on histopathological images using a hybrid YOLO and RESNET networks.

Sci Rep. 2024-2-26

[7]
Computational pathology-based weakly supervised prediction model for MGMT promoter methylation status in glioblastoma.

Front Neurol. 2024-2-7

[8]
Computational Pathology for Prediction of Isocitrate Dehydrogenase Gene Mutation from Whole Slide Images in Adult Patients with Diffuse Glioma.

Am J Pathol. 2024-5

[9]
Image-Based Subtype Classification for Glioblastoma Using Deep Learning: Prognostic Significance and Biologic Relevance.

JCO Clin Cancer Inform. 2024-1

[10]
Enhancing Spatial Transcriptomics Analysis by Integrating Image-Aware Deep Learning Methods.

Pac Symp Biocomput. 2024

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索