Redlich Jan-Philipp, Feuerhake Friedrich, Weis Joachim, Schaadt Nadine S, Teuber-Hanselmann Sarah, Buck Christoph, Luttmann Sabine, Eberle Andrea, Nikolin Stefan, Appenzeller Arno, Portmann Andreas, Homeyer André
Fraunhofer Institute for Digital Medicine MEVIS, Max-von-Laue-Straße 2, 28359, Bremen, Germany.
Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
Npj Imaging. 2024 Jul 1;2(1):16. doi: 10.1038/s44303-024-00020-8.
In recent years, the diagnosis of gliomas has become increasingly complex. Analysis of glioma histopathology images using artificial intelligence (AI) offers new opportunities to support diagnosis and outcome prediction. To give an overview of the current state of research, this review examines 83 publicly available research studies that have proposed AI-based methods for whole-slide histopathology images of human gliomas, covering the diagnostic tasks of subtyping (23/83), grading (27/83), molecular marker prediction (20/83), and survival prediction (29/83). All studies were reviewed with regard to methodological aspects as well as clinical applicability. It was found that the focus of current research is the assessment of hematoxylin and eosin-stained tissue sections of adult-type diffuse gliomas. The majority of studies (52/83) are based on the publicly available glioblastoma and low-grade glioma datasets from The Cancer Genome Atlas (TCGA) and only a few studies employed other datasets in isolation (16/83) or in addition to the TCGA datasets (15/83). Current approaches mostly rely on convolutional neural networks (63/83) for analyzing tissue at 20x magnification (35/83). A new field of research is the integration of clinical data, omics data, or magnetic resonance imaging (29/83). So far, AI-based methods have achieved promising results, but are not yet used in real clinical settings. Future work should focus on the independent validation of methods on larger, multi-site datasets with high-quality and up-to-date clinical and molecular pathology annotations to demonstrate routine applicability.
近年来,胶质瘤的诊断变得日益复杂。利用人工智能(AI)分析胶质瘤组织病理学图像为支持诊断和预后预测提供了新的机遇。为了概述当前的研究现状,本综述考察了83项公开的研究,这些研究提出了基于AI的方法用于人类胶质瘤的全切片组织病理学图像,涵盖了亚型分类(23/83)、分级(27/83)、分子标志物预测(20/83)和生存预测(29/83)等诊断任务。所有研究都从方法学方面以及临床适用性进行了综述。结果发现,当前研究的重点是对成人型弥漫性胶质瘤苏木精和伊红染色组织切片的评估。大多数研究(52/83)基于来自癌症基因组图谱(TCGA)的公开可用的胶质母细胞瘤和低级别胶质瘤数据集,只有少数研究单独使用其他数据集(16/83)或除TCGA数据集外还使用其他数据集(15/83)。当前方法大多依赖卷积神经网络(63/83)来分析20倍放大倍数的组织(35/83)。一个新的研究领域是临床数据、组学数据或磁共振成像的整合(29/83)。到目前为止,基于AI的方法已经取得了有前景的结果,但尚未应用于实际临床环境。未来的工作应聚焦于在具有高质量和最新临床及分子病理学注释的更大规模多中心数据集上对方法进行独立验证,以证明其常规适用性。
Cochrane Database Syst Rev. 2018-1-22
Health Technol Assess. 2001
Cochrane Database Syst Rev. 2022-5-20
JBI Database System Rev Implement Rep. 2016-4
Cochrane Database Syst Rev. 2022-3-2
Health Technol Assess. 2006-9
Health Technol Assess. 2024-10
J Pathol Inform. 2024-5-31
JCO Clin Cancer Inform. 2024-1
Pac Symp Biocomput. 2024