Suppr超能文献

相似文献

1
Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines.
Bioinformatics. 2017 Apr 1;33(7):1064-1072. doi: 10.1093/bioinformatics/btw749.
2
Multi-objective Parameter Auto-tuning for Tissue Image Segmentation Workflows.
J Digit Imaging. 2019 Jun;32(3):521-533. doi: 10.1007/s10278-018-0138-z.
3
Morphologically constrained and data informed cell segmentation of budding yeast.
Bioinformatics. 2018 Jan 1;34(1):88-96. doi: 10.1093/bioinformatics/btx550.
4
Fully Automated Enhanced Tumor Compartmentalization: Man vs. Machine Reloaded.
PLoS One. 2016 Nov 2;11(11):e0165302. doi: 10.1371/journal.pone.0165302. eCollection 2016.
5
Sensitivity analysis in digital pathology: Handling large number of parameters with compute expensive workflows.
Comput Biol Med. 2019 May;108:371-381. doi: 10.1016/j.compbiomed.2019.03.006. Epub 2019 Mar 13.
6
A novel framework for MR image segmentation and quantification by using MedGA.
Comput Methods Programs Biomed. 2019 Jul;176:159-172. doi: 10.1016/j.cmpb.2019.04.016. Epub 2019 Apr 17.
7
Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images.
Comput Methods Programs Biomed. 2018 Nov;166:39-49. doi: 10.1016/j.cmpb.2018.09.007. Epub 2018 Sep 21.
8
Contourlet-based active contour model for PET image segmentation.
Med Phys. 2013 Aug;40(8):082507. doi: 10.1118/1.4816296.
9
Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging.
Comput Methods Programs Biomed. 2019 Sep;178:289-301. doi: 10.1016/j.cmpb.2019.07.005. Epub 2019 Jul 8.
10
Automated quantification and evaluation of motion artifact on coronary CT angiography images.
Med Phys. 2018 Dec;45(12):5494-5508. doi: 10.1002/mp.13243. Epub 2018 Nov 13.

引用本文的文献

1
ModEx: a general purpose computer model exploration system.
Front Bioinform. 2023 May 25;3:1153800. doi: 10.3389/fbinf.2023.1153800. eCollection 2023.
2
On the Analyses of Medical Images Using Traditional Machine Learning Techniques and Convolutional Neural Networks.
Arch Comput Methods Eng. 2023;30(5):3173-3233. doi: 10.1007/s11831-023-09899-9. Epub 2023 Apr 4.
3
Sensitivity analysis for interpretation of machine learning based segmentation models in cardiac MRI.
BMC Med Imaging. 2021 Feb 15;21(1):27. doi: 10.1186/s12880-021-00551-1.
5
Sensitivity analysis in digital pathology: Handling large number of parameters with compute expensive workflows.
Comput Biol Med. 2019 May;108:371-381. doi: 10.1016/j.compbiomed.2019.03.006. Epub 2019 Mar 13.
6
Effective nuclei segmentation with sparse shape prior and dynamic occlusion constraint for glioblastoma pathology images.
J Med Imaging (Bellingham). 2019 Jan;6(1):017502. doi: 10.1117/1.JMI.6.1.017502. Epub 2019 Mar 14.
7
Multi-objective Parameter Auto-tuning for Tissue Image Segmentation Workflows.
J Digit Imaging. 2019 Jun;32(3):521-533. doi: 10.1007/s10278-018-0138-z.
8
Comparative analysis of tissue reconstruction algorithms for 3D histology.
Bioinformatics. 2018 Sep 1;34(17):3013-3021. doi: 10.1093/bioinformatics/bty210.
9
Parallel and Efficient Sensitivity Analysis of Microscopy Image Segmentation Workflows in Hybrid Systems.
Proc IEEE Int Conf Clust Comput. 2017 Sep;2017:25-35. doi: 10.1109/CLUSTER.2017.28. Epub 2017 Sep 26.

本文引用的文献

1
Hierarchical nucleus segmentation in digital pathology images.
Proc SPIE Int Soc Opt Eng. 2016 Feb;9791. doi: 10.1117/12.2217029. Epub 2016 Mar 23.
2
Visual parameter optimisation for biomedical image processing.
BMC Bioinformatics. 2015;16 Suppl 11(Suppl 11):S9. doi: 10.1186/1471-2105-16-S11-S9. Epub 2015 Aug 13.
3
Region Templates: Data Representation and Management for High-Throughput Image Analysis.
Parallel Comput. 2014 Dec 1;40(10):589-610. doi: 10.1016/j.parco.2014.09.003.
5
Open-box spectral clustering: applications to medical image analysis.
IEEE Trans Vis Comput Graph. 2013 Dec;19(12):2100-8. doi: 10.1109/TVCG.2013.181.
6
Tuner: principled parameter finding for image segmentation algorithms using visual response surface exploration.
IEEE Trans Vis Comput Graph. 2011 Dec;17(12):1892-901. doi: 10.1109/TVCG.2011.248.
7
Is a single energy functional sufficient? Adaptive energy functionals and automatic initialization.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):503-10. doi: 10.1007/978-3-540-75759-7_61.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验