Suppr超能文献

通过原生质体融合获得的酿酒酵母和发酵接合酵母的属间杂种。

Intergeneric hybrids of Saccharomyces cerevisiae and Zygosaccharomyces fermentati obtained by protoplast fusion.

作者信息

Pina A, Calderón I L, Benítez T

出版信息

Appl Environ Microbiol. 1986 May;51(5):995-1003. doi: 10.1128/aem.51.5.995-1003.1986.

Abstract

To obtain strains that are able to efficiently produce ethanol from different carbohydrates, mainly cellulose hydrolysates, several species of the genus Candida and a Zygosaccharomyces fermentati strain were examined for their ability to utilize cellobiose and produce ethanol, as well as for their thermotolerance and the possibility of genetic manipulation. Candida obtusa and Zygosaccharomyces fermentati tolerated the maximal temperature for growth, possessed the highest cellobiase activity, and offered the possibility of genetic manipulation, although neither of them proved to be a good producer of ethanol. Intergeneric hybrids of Saccharomyces cerevisiae and Z. fermentati were obtained after protoplast fusion. They were selected as prototrophic strains, after isolation of auxotrophic mutants from Z. fermentati and fusion with an S. cerevisiae strain which was also auxotrophic. The hybrids, which appeared at a frequency of 2 X 10(-7), presented characteristics of both parents, such as resistance to certain drugs and the ability to grow with either cellobiose or lactic acid as the sole carbon source; they were very stable, even under nonselective conditions. These hybrids may have important industrial applications as good fermenting strains.

摘要

为了获得能够从不同碳水化合物(主要是纤维素水解产物)高效生产乙醇的菌株,对几种假丝酵母属物种和一株发酵性接合酵母菌株进行了考察,检测它们利用纤维二糖和生产乙醇的能力,以及它们的耐热性和基因操作的可能性。钝假丝酵母和发酵性接合酵母能耐受生长的最高温度,具有最高的纤维二糖酶活性,并提供了基因操作的可能性,尽管它们都不是乙醇的良好生产者。通过原生质体融合获得了酿酒酵母和发酵性接合酵母的属间杂种。从发酵性接合酵母中分离出营养缺陷型突变体并与同样为营养缺陷型的酿酒酵母菌株融合后,将它们选为原养型菌株。杂种以2×10⁻⁷的频率出现,表现出双亲的特征,如对某些药物的抗性以及以纤维二糖或乳酸作为唯一碳源生长的能力;它们非常稳定,即使在非选择性条件下也是如此。这些杂种作为优良的发酵菌株可能具有重要的工业应用价值。

相似文献

1
Intergeneric hybrids of Saccharomyces cerevisiae and Zygosaccharomyces fermentati obtained by protoplast fusion.
Appl Environ Microbiol. 1986 May;51(5):995-1003. doi: 10.1128/aem.51.5.995-1003.1986.
7
Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose.
Enzyme Microb Technol. 2011 Jun 10;49(1):105-12. doi: 10.1016/j.enzmictec.2011.02.008. Epub 2011 Mar 3.
8
Hybrids obtained by protoplast fusion with a salt-tolerant yeast.
J Ind Microbiol. 1995 Jun;14(6):508-13. doi: 10.1007/BF01573966.
9
Comparison of Bioethanol Production by and from Glucose, Cellobiose, and Cellulose.
J Microbiol Biotechnol. 2019 Jun 28;29(6):905-912. doi: 10.4014/1904.04014.

引用本文的文献

1
New Saccharomyces cerevisiae-Kluyveromyces marxianus fusant shows enhanced alcoholic fermentation performance.
World J Microbiol Biotechnol. 2022 Oct 29;38(12):251. doi: 10.1007/s11274-022-03422-1.
2
The Genetics of Non-conventional Wine Yeasts: Current Knowledge and Future Challenges.
Front Microbiol. 2016 Jan 11;6:1563. doi: 10.3389/fmicb.2015.01563. eCollection 2015.
3
Improving industrial yeast strains: exploiting natural and artificial diversity.
FEMS Microbiol Rev. 2014 Sep;38(5):947-95. doi: 10.1111/1574-6976.12073. Epub 2014 May 8.
4
Evolutionary role of interspecies hybridization and genetic exchanges in yeasts.
Microbiol Mol Biol Rev. 2012 Dec;76(4):721-39. doi: 10.1128/MMBR.00022-12.
5
Mitochondrial DNA loss caused by ethanol in Saccharomyces flor yeasts.
Appl Environ Microbiol. 1997 Jan;63(1):7-12. doi: 10.1128/aem.63.1.7-12.1997.
6
Ethanol inhibition of Saccharomyces and Candida enzymes.
Curr Genet. 1989 Jan;15(1):7-16. doi: 10.1007/BF00445746.

本文引用的文献

1
Selection of wine yeasts for growth and fermentation in the presence of ethanol and sucrose.
Appl Environ Microbiol. 1983 May;45(5):1429-36. doi: 10.1128/aem.45.5.1429-1436.1983.
2
Optimal Cultural and Physiological Conditions for Handling Streptomyces rimosus Protoplasts.
Appl Environ Microbiol. 1982 Nov;44(5):1178-86. doi: 10.1128/aem.44.5.1178-1186.1982.
3
Saccharomyces cerevisiae Mutants Resistant to Catabolite Repression: Use in Cheese Whey Hydrolysate Fermentation.
Appl Environ Microbiol. 1982 Sep;44(3):631-9. doi: 10.1128/aem.44.3.631-639.1982.
4
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
5
A colorimetric method for the determination of sugars.
Nature. 1951 Jul 28;168(4265):167. doi: 10.1038/168167a0.
6
The specificity of induction of beta-glucosidase in Saccharomyces cerevisiae.
Biochim Biophys Acta. 1959 Nov;36:47-55. doi: 10.1016/0006-3002(59)90068-x.
8
Polysaccharide syntheses in growing yeasts.
J Biol Chem. 1954 May;208(1):395-407.
9
Protoplast fusion in the yeast Candida utilis.
Acta Microbiol Acad Sci Hung. 1981;28(4):339-45.
10
Use of the polyene antibiotic N-glycosyl-polifungin in counterselecting yeast mutants.
Mutat Res. 1981 Mar;91(2):111-4. doi: 10.1016/0165-7992(81)90082-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验