State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
Plant J. 2019 Jun;98(6):1015-1032. doi: 10.1111/tpj.14299. Epub 2019 Apr 23.
Wheat (Triticum aestivum L.), a globally important crop, is challenged by increasing temperatures (heat stress, HS). However its polyploid nature, the incompleteness of its genome sequences and annotation, the lack of comprehensive HS-responsive transcriptomes and the unexplored heat sensing and signaling of wheat hinder our full understanding of its adaptations to HS. The recently released genome sequences of wheat, as well as emerging single-molecular sequencing technologies, provide an opportunity to thoroughly investigate the molecular mechanisms of the wheat response to HS. We generated a high-resolution spatio-temporal transcriptome map of wheat flag leaves and filling grain under HS at 0 min, 5 min, 10 min, 30 min, 1 h and 4 h by combining full-length single-molecular sequencing and Illumina short reads sequencing. This hybrid sequencing newly discovered 4947 loci and 70 285 transcripts, generating the comprehensive and dynamic list of HS-responsive full-length transcripts and complementing the recently released wheat reference genome. Large-scale analysis revealed a global landscape of heat adaptations, uncovering unexpected rapid heat sensing and signaling, significant changes of more than half of HS-responsive genes within 30 min, heat shock factor-dependent and -independent heat signaling, and metabolic alterations in early HS-responses. Integrated analysis also demonstrated the differential responses and partitioned functions between organs and subgenomes, and suggested a differential pattern of transcriptional and alternative splicing regulation in the HS response. This study provided comprehensive data for dissecting molecular mechanisms of early HS responses in wheat and highlighted the genomic plasticity and evolutionary divergence of polyploidy wheat.
小麦(Triticum aestivum L.)是一种全球重要的作物,面临着气温升高(热应激,HS)的挑战。然而,其多倍体性质、基因组序列和注释的不完整性、缺乏全面的 HS 响应转录组以及未探索的小麦热感知和信号转导,阻碍了我们对其适应 HS 的全面理解。小麦最近发布的基因组序列以及新兴的单分子测序技术,为深入研究小麦对 HS 的分子机制提供了机会。我们通过结合全长单分子测序和 Illumina 短读测序,生成了小麦旗叶和灌浆期在 0 min、5 min、10 min、30 min、1 h 和 4 h 高温胁迫下的高分辨率时空转录组图谱。这种混合测序新发现了 4947 个基因座和 70285 个转录本,生成了全面和动态的 HS 响应全长转录本列表,并补充了最近发布的小麦参考基因组。大规模分析揭示了热适应的全球格局,揭示了出人意料的快速热感知和信号转导,30 min 内超过一半的 HS 响应基因发生显著变化,热休克因子依赖和非依赖的热信号转导,以及早期 HS 反应中的代谢改变。综合分析还表明,器官和亚基因组之间存在不同的响应和功能分区,并提示在 HS 响应中存在转录和选择性剪接调控的差异模式。本研究为解析小麦早期 HS 响应的分子机制提供了全面的数据,并强调了多倍体小麦的基因组可塑性和进化分化。