Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia.
Magn Reson Med. 2019 Jul;82(1):49-61. doi: 10.1002/mrm.27729. Epub 2019 Mar 20.
Phosphorus spectroscopy can differentiate among liver disease stages and types. To quantify absolute concentrations of phosphorus metabolites, sensitivity calibration and transmit field ( ) correction are required. The trend toward ultrahigh fields (7 T) and the use of multichannel RF coils makes this ever more challenging. We investigated the constraints on reference phantoms, and implemented techniques for the absolute quantification of human liver phosphorus spectra acquired using a 10-cm loop and a 16-channel array at 7 T.
The effect of phantom conductivity was assessed at 25.8 MHz (1.5 T), 49.9 MHz (3 T), and 120.3 MHz (7 T) by electromagnetic modeling. Radiofrequency field maps ( ) were measured in phosphate phantoms (18 mM and 40 mM) at 7 T. These maps were used to assess the correction of 4 phantom 3D-CSI data sets using 3 techniques: phantom replacement, explicit normalization, and simplified normalization. In vivo liver spectra acquired with a 10-cm loop were corrected with all 3 methods. Simplified normalization was applied to in vivo 16-channel array data sets.
Simulations show that quantification errors of less than 3% are achievable using a uniform electrolyte phantom with a conductivity of 0.23-0.86 S.m at 1.5 T, 0.39-0.58 S.m at 3 T, and 0.34-0.42 S.m (16-19 mM KH PO ) at 7 T. The mean γ-ATP concentration quantified in vivo at 7 T was 1.39 ± 0.30 mmol.L to 1.71 ± 0.35 mmol.L wet tissue for the 10-cm loop and 1.88 ± 0.25 mmol.L wet tissue for the array.
It is essential to select a calibration phantom with appropriate conductivity for quantitative phosphorus spectroscopy at 7 T. Using an 18-mM phosphate phantom and simplified normalization, human liver phosphate metabolite concentrations were successfully quantified at 7 T.
磷波谱可以区分肝脏疾病的阶段和类型。为了定量磷代谢物的绝对浓度,需要灵敏度校准和透射场( )校正。超高场(7T)的趋势和多通道射频线圈的使用使得这变得越来越具有挑战性。我们研究了参考体模的限制,并针对在 7T 下使用 10cm 环和 16 通道阵列采集的人体肝脏磷谱的绝对定量,实现了技术。
在 25.8MHz(1.5T)、49.9MHz(3T)和 120.3MHz(7T)下,通过电磁建模评估了体模电导率的影响。在 7T 时,在磷酸盐体模(18mM 和 40mM)中测量了射频场图( )。这些图用于评估使用 3 种技术对 4 种体模 3D-CSI 数据集的校正:体模替换、显式归一化和简化归一化。使用所有 3 种方法对使用 10cm 环采集的体内肝脏光谱进行了校正。简化归一化应用于体内 16 通道阵列数据集。
模拟结果表明,在 1.5T 时,使用电导率为 0.23-0.86S.m 的均匀电解质体模,在 3T 时,使用电导率为 0.39-0.58S.m 的均匀电解质体模,在 7T 时,使用电导率为 0.34-0.42S.m(16-19mMKH PO ),可以实现小于 3%的定量误差。在 7T 下,使用 10cm 环体内定量的平均 γ-ATP 浓度为 1.39±0.30mmol.L 至 1.71±0.35mmol.L 湿组织,使用阵列为 1.88±0.25mmol.L 湿组织。
在 7T 时进行定量磷波谱分析,必须选择具有适当电导率的校准体模。使用 18mM 磷酸盐体模和简化归一化,成功地在 7T 下定量了人体肝脏磷酸盐代谢物浓度。