Suppr超能文献

迈向对固态电池中锂金属负极的基本理解——关于石榴石型固体电解质LiAlLaZrO的电化学机械研究

Toward a Fundamental Understanding of the Lithium Metal Anode in Solid-State Batteries-An Electrochemo-Mechanical Study on the Garnet-Type Solid Electrolyte LiAlLaZrO.

作者信息

Krauskopf Thorben, Hartmann Hannah, Zeier Wolfgang G, Janek Jürgen

机构信息

Institute of Physical Chemistry , Justus-Liebig-University Giessen , Heinrich-Buff-Ring 17 , D-35392 Giessen , Germany.

Center for Materials Research (LaMa) , Justus-Liebig-University Giessen , Heinrich-Buff-Ring 16 , D-35392 Giessen , Germany.

出版信息

ACS Appl Mater Interfaces. 2019 Apr 17;11(15):14463-14477. doi: 10.1021/acsami.9b02537. Epub 2019 Apr 2.

Abstract

For the development of next-generation lithium batteries, major research effort is made to enable a reversible lithium metal anode by the use of solid electrolytes. However, the fundamentals of the solid-solid interface and especially the processes that take place under current load are still not well characterized. By measuring pressure-dependent electrode kinetics, we explore the electrochemo-mechanical behavior of the lithium metal anode on the garnet electrolyte LiAlLaZrO. Because of the stability against reduction in contact with the lithium metal, this serves as an optimal model system for kinetic studies without electrolyte degradation. We show that the interfacial resistance becomes negligibly small and converges to practically 0 Ω·cm at high external pressures of several 100 MPa. To the best of our knowledge, this is the smallest reported interfacial resistance in the literature without the need for any interlayer. We interpret this observation by the concept of constriction resistance and show that the contact geometry in combination with the ionic transport in the solid electrolyte dominates the interfacial contributions for a clean interface in equilibrium. Furthermore, we show that-under anodic operating conditions-the vacancy diffusion limitation in the lithium metal restricts the rate capability of the lithium metal anode because of contact loss caused by vacancy accumulation and the resulting pore formation near the interface. Results of a kinetic model show that the interface remains morphologically stable only when the anodic load does not exceed a critical value of approximately 100 μA·cm, which is not high enough for practical cell setups employing a planar geometry. We highlight that future research on lithium metal anodes on solid electrolytes needs to focus on the transport within and the morphological instability of the metal electrode. Overall, the results help to develop a deeper understanding of the lithium metal anode on solid electrolytes, and the major conclusions are not limited to the Li|LiAlLaZrO interface.

摘要

为了开发下一代锂电池,人们付出了巨大的研究努力,通过使用固体电解质来实现可逆锂金属负极。然而,固-固界面的基本原理,尤其是在电流负载下发生的过程,仍未得到很好的表征。通过测量与压力相关的电极动力学,我们研究了锂金属负极在石榴石电解质LiAlLaZrO上的电化学机械行为。由于与锂金属接触时具有抗还原稳定性,这为无电解质降解的动力学研究提供了一个理想的模型系统。我们表明,在几百兆帕斯卡的高外部压力下,界面电阻变得极小,实际上收敛到0Ω·cm。据我们所知,这是文献中报道的最小界面电阻,且无需任何中间层。我们用收缩电阻的概念来解释这一观察结果,并表明接触几何形状与固体电解质中的离子传输相结合,在平衡状态下主导了清洁界面的界面贡献。此外,我们还表明,在阳极操作条件下,锂金属中的空位扩散限制限制了锂金属负极的倍率性能,这是由于空位积累导致的接触损失以及界面附近由此产生的孔隙形成。动力学模型的结果表明,只有当阳极负载不超过约100μA·cm的临界值时,界面在形态上才保持稳定,而这对于采用平面几何结构的实际电池设置来说还不够高。我们强调,未来对固体电解质上锂金属负极的研究需要关注金属电极内部的传输和形态不稳定性。总体而言,这些结果有助于更深入地理解固体电解质上的锂金属负极,主要结论并不局限于Li|LiAlLaZrO界面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验