Zhao Lihong, Feng Min, Wu Chaoshan, Guo Liqun, Chen Zhaoyang, Risal Samprash, Ai Qing, Lou Jun, Fan Zheng, Qi Yue, Yao Yan
Department of Electrical and Computer Engineering and Texas Center for Superconductivity at the University of Houston, University of Houston, Houston, TX, USA.
School of Engineering, Brown University, Providence, RI, USA.
Nat Commun. 2025 May 8;16(1):4283. doi: 10.1038/s41467-025-59567-8.
The quality of Li-solid electrolyte interface is crucial for the performance of solid-state lithium metal batteries, particularly at low stack pressure, but its dynamics during cell operation remain poorly understood due to a lack of reliable operando characterization techniques. Here, we report the evolution of Li-electrolyte interface with high spatial resolution using operando scanning electron microscopy under realistic operating conditions. By tracking the stripping process of both Li and Li-rich Li-Mg alloy anodes, we show that multiple voids coalesce into a single gap and eventually delaminate the interface in Li, whereas the voids split and collapse to partially recover interfacial contact in Li-Mg. Density functional theory calculations show that the stronger Mg-S interaction at the metal-electrolyte interface attracts Mg toward the interface and repels Li-vacancies into the bulk, resulting in a reduced number of voids. The pressure-dependent voltage profiles of Li and Li-Mg stripping suggest that loss of contact due to void formation, rather than Mg accumulation at the interface, is the origin of high overpotential that limits the utilization of metal anodes. Improved interfacial contact enables stable cycling of all-solid-state lithium full cell at low stack pressure (1 MPa) and moderate rate (2 mA cm) simultaneously. The real-time visualization of Li-electrolyte interface dynamics provides critical insights into the rational design of solid-state battery interfaces.
锂固体电解质界面的质量对于固态锂金属电池的性能至关重要,特别是在低堆叠压力下,但其在电池运行过程中的动力学由于缺乏可靠的原位表征技术而仍未得到充分理解。在此,我们报告了在实际运行条件下使用原位扫描电子显微镜以高空间分辨率观察到的锂电解质界面的演变情况。通过追踪锂和富锂锂镁合金阳极的脱嵌过程,我们发现多个空隙合并成一个单一间隙,最终使锂中的界面分层,而在锂镁中,空隙分裂并坍塌,部分恢复了界面接触。密度泛函理论计算表明,金属 - 电解质界面处更强的镁 - 硫相互作用将镁吸引到界面并将锂空位排斥到主体中,从而减少了空隙数量。锂和锂镁脱嵌过程中与压力相关的电压曲线表明,由于空隙形成导致的接触丧失,而非界面处的镁积累,是限制金属阳极利用率的高过电位的根源。改善的界面接触使得全固态锂全电池能够在低堆叠压力(1兆帕)和中等速率(2毫安每平方厘米)下同时实现稳定循环。锂电解质界面动力学的实时可视化提供了对固态电池界面合理设计的关键见解。