Suppr超能文献

中太古代海洋中氧气产量有限。

Limited oxygen production in the Mesoarchean ocean.

作者信息

Ossa Ossa Frantz, Hofmann Axel, Spangenberg Jorge E, Poulton Simon W, Stüeken Eva E, Schoenberg Ronny, Eickmann Benjamin, Wille Martin, Butler Mike, Bekker Andrey

机构信息

Department of Geosciences, University of Tuebingen, 72074 Tuebingen, Germany;

Department of Geology, University of Johannesburg, 2092 Johannesburg, South Africa.

出版信息

Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6647-6652. doi: 10.1073/pnas.1818762116. Epub 2019 Mar 20.

Abstract

The Archean Eon was a time of predominantly anoxic Earth surface conditions, where anaerobic processes controlled bioessential element cycles. In contrast to "oxygen oases" well documented for the Neoarchean [2.8 to 2.5 billion years ago (Ga)], the magnitude, spatial extent, and underlying causes of possible Mesoarchean (3.2 to 2.8 Ga) surface-ocean oxygenation remain controversial. Here, we report δN and δC values coupled with local seawater redox data for Mesoarchean shales of the Mozaan Group (Pongola Supergroup, South Africa) that were deposited during an episode of enhanced Mn (oxyhydr)oxide precipitation between ∼2.95 and 2.85 Ga. Iron and Mn redox systematics are consistent with an oxygen oasis in the Mesoarchean anoxic ocean, but δN data indicate a Mo-based diazotrophic biosphere with no compelling evidence for a significant aerobic nitrogen cycle. We propose that in contrast to the Neoarchean, dissolved O levels were either too low or too limited in extent to develop a large and stable nitrate reservoir in the Mesoarchean ocean. Since biological N fixation was evidently active in this environment, the growth and proliferation of O-producing organisms were likely suppressed by nutrients other than nitrogen (e.g., phosphorus), which would have limited the expansion of oxygenated conditions during the Mesoarchean.

摘要

太古宙时期,地球表面主要处于缺氧状态,厌氧过程控制着生物必需元素的循环。与新太古代(28亿至25亿年前)有充分记录的“氧气绿洲”不同,中太古代(32亿至28亿年前)海洋表面氧化的程度、空间范围及潜在原因仍存在争议。在此,我们报告了莫赞群(南非庞戈拉超群)中太古代页岩的δN和δC值,并结合了当地海水的氧化还原数据,这些页岩是在约295亿至285亿年前锰(氢)氧化物沉淀增强的时期沉积的。铁和锰的氧化还原系统与中太古代缺氧海洋中的氧气绿洲一致,但δN数据表明存在一个以钼为基础的固氮生物圈,没有确凿证据证明存在显著的有氧氮循环。我们提出,与新太古代不同,中太古代海洋中的溶解氧水平要么过低,要么范围过于有限,无法形成一个庞大且稳定的硝酸盐库。由于生物固氮在这种环境中显然很活跃,产氧生物的生长和繁殖可能受到除氮(如磷)以外的其他营养物质的抑制,这限制了中太古代氧化条件的扩展。

相似文献

1
Limited oxygen production in the Mesoarchean ocean.中太古代海洋中氧气产量有限。
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6647-6652. doi: 10.1073/pnas.1818762116. Epub 2019 Mar 20.
4
Geological constraints on the origin of oxygenic photosynthesis.氧气光合作用起源的地质制约因素。
Photosynth Res. 2011 Jan;107(1):11-36. doi: 10.1007/s11120-010-9594-0. Epub 2010 Sep 30.
5
Onset of the aerobic nitrogen cycle during the Great Oxidation Event.好氧氮循环在大氧化事件期间的开始。
Nature. 2017 Feb 23;542(7642):465-467. doi: 10.1038/nature20826. Epub 2017 Feb 6.
6
Sedimentary sulfur isotopes and Neoarchean ocean oxygenation.沉积硫同位素与新太古代海洋氧化作用
Sci Adv. 2018 Jan 24;4(1):e1701835. doi: 10.1126/sciadv.1701835. eCollection 2018 Jan.
10
Cyanobacterial Diazotrophy and Earth's Delayed Oxygenation.蓝藻固氮作用与地球氧气的延迟出现
Front Microbiol. 2016 Sep 23;7:1526. doi: 10.3389/fmicb.2016.01526. eCollection 2016.

引用本文的文献

2
Exploring productivity hotspots in the Precambrian biosphere.探索前寒武纪生物圈中的生产力热点。
Philos Trans R Soc Lond B Biol Sci. 2025 Aug 7;380(1931):20240103. doi: 10.1098/rstb.2024.0103.
6
A novel quinone biosynthetic pathway illuminates the evolution of aerobic metabolism.一条新的醌生物合成途径揭示了有氧代谢的进化。
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2421994122. doi: 10.1073/pnas.2421994122. Epub 2025 Feb 20.

本文引用的文献

1
Early Archean origin of Photosystem II.早期太古代的光系统 II 起源。
Geobiology. 2019 Mar;17(2):127-150. doi: 10.1111/gbi.12322. Epub 2018 Nov 9.
6
Biomass recycling and Earth's early phosphorus cycle.生物质再循环与地球早期磷循环。
Sci Adv. 2017 Nov 22;3(11):eaao4795. doi: 10.1126/sciadv.aao4795. eCollection 2017 Nov.
8
Evolution of the global phosphorus cycle.全球磷循环的演变。
Nature. 2017 Jan 19;541(7637):386-389. doi: 10.1038/nature20772. Epub 2016 Dec 21.
9

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验