Laboratory of Experimental Biophysics, Institutes of Physics and Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
Laboratory of Nanoscale Biology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
Nat Commun. 2019 Mar 20;10(1):1267. doi: 10.1038/s41467-019-09247-1.
Super-resolution microscopies based on the localization of single molecules have been widely adopted due to their demonstrated performance and their accessibility resulting from open software and simple hardware. The PAINT method for localization microscopy offers improved resolution over photoswitching methods, since it is less prone to sparse sampling of structures and provides higher localization precision. Here, we show that waveguides enable increased throughput and data quality for PAINT, by generating a highly uniform ~100 × 2000 µm area evanescent field for TIRF illumination. To achieve this, we designed and fabricated waveguides optimized for efficient light coupling and propagation, incorporating a carefully engineered input facet and taper. We also developed a stable, low-cost microscope and 3D-printable waveguide chip holder for easy alignment and imaging. We demonstrate the capabilities of our open platform by using DNA-PAINT to image multiple whole cells or hundreds of origami structures in a single field of view.
基于单分子定位的超分辨率显微镜由于其出色的性能以及开放软件和简单硬件的易用性而得到了广泛应用。定位显微镜的 PAINT 方法提供了比光开关方法更高的分辨率,因为它不太容易对结构进行稀疏采样,并提供了更高的定位精度。在这里,我们展示了波导如何通过为 TIRF 照明产生高度均匀的~100×2000µm 范围消逝场来提高 PAINT 的通量和数据质量。为此,我们设计并制造了针对高效光耦合和传播进行了优化的波导,包括精心设计的输入面和锥形。我们还开发了一种稳定、低成本的显微镜和 3D 可打印波导芯片支架,便于对准和成像。我们通过使用 DNA-PAINT 来在单个视场中对多个完整细胞或数百个折纸结构进行成像,展示了我们开放式平台的功能。