Hernández-Cámara Pablo, Daudén-Oliver Paula, Laparra Valero, Malo Jesús
Image Processing Lab, Parc Científic, Universitat de València, València, Spain.
Front Psychol. 2024 Oct 23;15:1415958. doi: 10.3389/fpsyg.2024.1415958. eCollection 2024.
The experiments allowed by current machine learning models imply a revival of the debate on the causes of specific trends of human visual psychophysics. Machine learning facilitates the exploration of the effect of specific visual goals (such as image segmentation) by different neural architectures in different statistical environments in an unprecedented manner. In this way, (1) the principles behind psychophysical facts such as the non-Euclidean nature of human color discrimination and (2) the emergence of human-like behaviour in artificial systems can be explored under a new light. In this work, we show for the first time that the or of image segmentation networks for natural images under changes of illuminant in the color space (a sort of insensitivity region around the ) is an oriented similarly to a (human) MacAdam ellipse. This striking similarity between an artificial system and human vision motivates a set of experiments checking the relevance of the statistical environment on the emergence of such insensitivity regions. Results suggest, that in this case, the statistics of the environment may be more relevant than the architecture selected to perform the image segmentation.
当前机器学习模型所允许的实验意味着关于人类视觉心理物理学特定趋势成因的争论再度兴起。机器学习以前所未有的方式促进了在不同统计环境下,通过不同神经架构对特定视觉目标(如图像分割)效果的探索。通过这种方式,(1)诸如人类颜色辨别非欧几里得性质等心理物理事实背后的原理,以及(2)人工系统中类人行为的出现,可以在新的视角下进行探索。在这项工作中,我们首次表明,在颜色空间中光源变化(一种围绕 的不敏感区域)的情况下,自然图像的图像分割网络的 或 与(人类)麦克亚当椭圆的方向相似。人工系统与人类视觉之间的这种惊人相似性促使人们进行了一系列实验,以检验统计环境对这种不敏感区域出现的相关性。结果表明,在这种情况下,环境的统计数据可能比为执行图像分割而选择的架构更为相关。