Vila-Tomás Jorge, Hernández-Cámara Pablo, Malo Jesús
Image Processing Lab, Parc Científic, Universitat de València, Valencia, Spain.
Front Neurosci. 2023 Jul 6;17:1208882. doi: 10.3389/fnins.2023.1208882. eCollection 2023.
We show that classical hue cancellation experiments lead to human-like opponent curves even if the task is done by trivial () artificial networks. Specifically, human-like opponent spectral sensitivities always emerge in artificial networks as long as (i) the converts the input radiation into any tristimulus-like representation, and (ii) the post-retinal solves the standard hue cancellation task, e.g. the network looks for the weights of the cancelling lights so that every monochromatic stimulus plus the weighted cancelling lights match a grey reference in the (arbitrary) color representation used by the network. In fact, the specific cancellation lights (and not the network architecture) are key to obtain human-like curves: results show that the classical choice of the lights is the one that leads to the best (more human-like) result, and any other choices lead to progressively different spectral sensitivities. We show this in two ways: through using a range of networks with different architectures and a range of cancellation lights, and through a of the experiments. This suggests that the opponent curves of the classical experiment are just a by-product of the front-end photoreceptors and of a very specific experimental choice but they do not inform about the downstream color representation. In fact, the architecture of the post-retinal network (signal recombination or internal color space) seems irrelevant for the emergence of the curves in the classical experiment. This result in artificial networks questions the conventional interpretation of the classical result in humans by Jameson and Hurvich.
我们表明,即使该任务由简单的人工网络完成,经典的色调消除实验也会产生类似人类的对立曲线。具体而言,只要(i)将输入辐射转换为任何类似三刺激值的表示形式,并且(ii)视网膜后网络解决标准的色调消除任务,例如网络寻找消除光的权重,以便每个单色刺激加上加权的消除光在网络使用的(任意)颜色表示中与灰色参考匹配,那么类似人类的对立光谱敏感度就总会在人工网络中出现。事实上,特定的消除光(而非网络架构)是获得类似人类曲线的关键:结果表明,经典的光的选择是导致最佳(更类似人类)结果的选择,而任何其他选择都会导致逐渐不同的光谱敏感度。我们通过两种方式证明这一点:一是使用一系列具有不同架构的网络和一系列消除光进行实验,二是对实验进行模拟。这表明经典实验的对立曲线只是前端光感受器和非常特定的实验选择的副产品,但它们并不能说明下游的颜色表示。实际上,视网膜后网络的架构(信号重组或内部颜色空间)对于经典实验中曲线的出现似乎无关紧要。人工网络中的这一结果对詹姆森和赫尔维奇对人类经典结果的传统解释提出了质疑。