Suppr超能文献

捕食性土壤螨长角巨螯螨(中气门目:寄螨科)从进食到禁食期间的肠道上皮:一种组织,两种功能。

The gut epithelium from feeding to fasting in the predatory soil mite Pergamasus longicornis (Mesostigmata: Parasitidae): one tissue, two roles.

作者信息

Bowman Clive E

机构信息

Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom.

出版信息

Exp Appl Acarol. 2019 Mar;77(3):253-357. doi: 10.1007/s10493-019-00356-6. Epub 2019 Mar 20.

Abstract

A review of acarine gut physiology based on published narratives dispersed over the historical international literature is given. Then, in an experimental study of the free-living predatory soil mite Pergamasus longicornis (Berlese), quantitative micro-anatomical changes in the gut epithelium are critically assessed from a temporal series of histological sections during and after feeding on larval dipteran prey. An argued functional synthesis based upon comparative kinetics is offered for verification in other mesostigmatids. Mid- and hind-gut epithelia cell types interconvert in a rational way dependent upon the physical consequences of ingestion, absorption and egestion. The fasted transitional pseudo-stratified epithelium rapidly becomes first squamous on prey ingestion (by stretching), then columnar during digestion before confirmed partial disintegration (gut 'lumenation') during egestion back to a pseudo-stratified state. Exponential processes within the mid- and endodermic hind-gut exhibit 'stiff' dynamics. Cells expand rapidly ([Formula: see text] 22.9-49.5 min) and vacuolate quickly ([Formula: see text] 1.1 h). Cells shrink very slowly ([Formula: see text] 4.9 days) and devacuolate gently ([Formula: see text] 1.0-1.7 days). Egestive cellular degeneration has an initial [Formula: see text] 7.7 h. Digestion appears to be triggered by maximum gut expansion-estimated at 10 min post start of feeding. Synchrony with changes in gut lumen contents suggests common changes in physiological function over time for the cells as a whole tightly-coupled epithelium. Distinct in architecture as a tissue over time the various constituent cell types appear functionally the same. Functional phases are: early fluid transportation (0-1 h) and extracellular activity (10-90 min); through rising food absorption (10 min to [Formula: see text] day); to slow intracellular meal processing and degenerative egestive waste material production (1 to [Formula: see text] days) much as in ticks. The same epithelium is both absorptive and degenerative in role. The switch in predominant physiology begins 4 h after the start of feeding. Two separate pulses of clavate cells appear to be a mechanism to facilitate transport by increasing epithelial surface area in contact with the lumen. Free-floating cells may augment early extracellular lumenal digestion. Possible evidence for salivary enzyme alkaline-related extra-corporeal digestion was found. Giant mycetome-like cells were found embedded in the mid-gut wall. Anteriorly, the mid-gut behaves like a temporally expendable food processing tissue and minor long-term resistive store. Posteriorly the mid-gut behaves like a major assimilative/catabolic tissue and 'last-out' food depot (i.e., a 'hepatopancreas' function) allowing the mite to resist starvation for up to 3.5 weeks after a single meal. A 'conveyor-belt' wave of physiology (i.e., feeding and digestion, then egestion and excretion) sweeps posteriorly but not necessarily pygidially over time. Assimilation efficiency is estimated at 82%. The total feeding cycle time histologically from a single meal allowing for the bulk of intracellular digestion and egestive release is not 52.5 h but of the order of 6 days ([Formula: see text] total gut emptyings per day), plus typically a further 3 days for subsequent excretion to occur. Final complete gut system clearance in this cryptozooid may take much longer ([Formula: see text] days). A common physiology across the anactinotrichid acarines is proposed. A look to the future of this field is included.

摘要

本文基于分散在历史国际文献中的已发表叙述,对螨类肠道生理学进行了综述。然后,在一项对自由生活的捕食性土壤螨长角巨螯螨(Berlese)的实验研究中,通过对取食双翅目幼虫猎物期间及之后的一系列组织学切片进行分析,严格评估了肠道上皮的定量微观解剖变化。基于比较动力学提出了一种有论据的功能综合理论,以供其他中气门螨类验证。中肠和后肠上皮细胞类型以合理的方式相互转化,这取决于摄入、吸收和排泄的生理后果。禁食状态下的过渡性假复层上皮在摄取猎物时(通过伸展)迅速变为鳞状,然后在消化过程中变为柱状,在排泄时确认部分解体(肠道“管腔化”)并恢复为假复层状态。中肠和内胚层后肠内的指数过程表现出“刚性”动力学。细胞迅速扩张([公式:见原文] 22.9 - 49.5分钟)并迅速空泡化([公式:见原文] 1.1小时)。细胞收缩非常缓慢([公式:见原文] 4.9天)并缓慢排空液泡([公式:见原文] 1.0 - 1.7天)。排泄性细胞变性最初有一个[公式:见原文] 7.7小时的过程。消化似乎是由肠道最大扩张引发的,估计在开始进食后10分钟出现。与肠道管腔内容物变化的同步性表明,作为一个紧密耦合的上皮组织,细胞的生理功能随时间发生了共同变化。随着时间推移,作为一种组织,不同组成细胞类型在结构上不同,但在功能上似乎相同。功能阶段包括:早期液体运输(0 - 1小时)和细胞外活动(10 - 90分钟);随后食物吸收增加(10分钟至[公式:见原文]天);再到细胞内食物处理缓慢和排泄性废物产生(1至[公式:见原文]天),这与蜱类情况类似。同一上皮组织兼具吸收和退化功能。主要生理功能的转变在开始进食后4小时开始。两批分开出现的棒状细胞似乎是一种通过增加与管腔接触的上皮表面积来促进运输的机制。游离细胞可能增强早期细胞外管腔消化。发现了唾液酶碱性相关体外消化的可能证据。在中肠壁中发现了嵌入的巨大菌瘤样细胞。在前部,中肠表现得像一个随时间可消耗的食物处理组织和次要的长期储存组织。在后部,中肠表现得像一个主要的同化/分解代谢组织和“最后的”食物储存库(即“肝胰腺”功能),使螨类在单次进食后能够抵抗饥饿长达3.5周。随着时间推移,一种“传送带”式的生理过程(即进食和消化,然后排泄和排遗)向后推进,但不一定是向尾端推进。同化效率估计为82%。从组织学角度来看,单次进食后允许大部分细胞内消化和排泄释放的总进食周期时间不是52.5小时,而是大约6天([公式:见原文]每天总肠道排空次数),再加上随后排泄通常还需要3天时间。这种隐生类螨的肠道系统最终完全清除可能需要更长时间([公式:见原文]天)。本文提出了无鞭毛螨类具有共同生理学特征的观点,并展望了该领域的未来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验