Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
Exp Appl Acarol. 2021 May;84(1):1-119. doi: 10.1007/s10493-021-00612-8. Epub 2021 Apr 30.
A model based upon mechanics is used in a re-analysis of historical acarine morphological work augmented by an extra seven zoophagous mesostigmatid species. This review shows that predatory mesostigmatids do have cheliceral designs with clear rational purposes. Almost invariably within an overall body size class, the switch in predatory style from a worm-like prey feeding ('crushing/mashing' kill) functional group to a micro-arthropod feeding ('active prey cutting/slicing/slashing' kill) functional group is matched by: an increased cheliceral reach, a bigger chelal gape, a larger morphologically estimated chelal crunch force, and a drop in the adductive lever arm velocity ratio of the chela. Small size matters. Several uropodines (Eviphis ostrinus, the omnivore Trachytes aegrota, Urodiaspis tecta and, Uropoda orbicularis) have more elongate chelicerae (greater reach) than their chelal gape would suggest, even allowing for allometry across mesostigmatids. They may be: plesiosaur-like high-speed strikers of prey, scavenging carrion feeders (like long-necked vultures), probing/burrowing crevice feeders of cryptic nematodes, or small morsel/fragmentary food feeders. Some uropodoids have chelicerae and chelae which probably work like a construction-site mechanical excavator-digger with its small bucket. Possible hoeing/bulldozing, spore-cracking and tiny sabre-tooth cat-like striking actions are discussed for others. Subtle changes lead small mesostigmatids to be predator-scavengers (mesocarnivores) or to be predator-fungivores (hypocarnivores). Some uropodines (e.g., the worm-like prey feeder Alliphis siculus and, Uropoda orbicularis) show chelae similar in design to astigmatids and cryptostigmatids indicating possible facultative saprophagy. Scale matters-obligate predatory designs (hypercarnivory) start for mesostigmatids with chelal gape > 150 μm and cheliceral reach > 350 μm (i.e., about 500-650 μm in body size). Commonality of trophic design in these larger species with solifugids is indicated. Veigaia species with low chelal velocity ratio and other morphological strengthening specialisms, appear specially adapted in a concerted way for predating active soft and fast moving springtails (Collembola). Veigaia cerva shows a markedly bigger chelal gape than its cheliceral reach would proportionately infer suggesting it is a crocodile-like sit-and-wait or ambush predator par excellence. A small chelal gape, low cheliceral reach, moderate velocity ratio variant of the worm-like feeding habit design is supported for phytoseiid pollenophagy. Evidence for a resource partitioning model in the evolution of gnathosomal development is found. A comparison to crustacean claws and vertebrate mandibles is made. Alliphis siculus and Rhodacarus strenzkei are surprisingly powerful mega-cephalics for their small size. Parasitids show a canid-like trophic design. The chelicera of the nematophagous Alliphis halleri shows felid-like features. Glyphtholaspis confusa has hyaena-like cheliceral dentition. The latter species has a markedly smaller chelal gape than its cheliceral reach would suggest proportionately, which together with a high chelal velocity ratio and a high estimated chelal crunch force matches a power specialism of feeding on immobile tough fly eggs/pupae by crushing (durophagy). A consideration of gnathosomal orientation is made. Predatory specialisms appear to often match genera especially in larger mesostigmatids, which may scale quite differently. Comparison to holothyrids and opilioacarids indicates that the cheliceral chelae of the former are cutting-style and those of the latter are crushing-style. A simple validated easy-to-use '2:1 on' predictive algorithm of feeding habit type is included based on a strength-speed tradeoff in chelal velocity ratio for ecologists to test in the field.
基于力学的模型被用于重新分析历史上的节肢动物形态学工作,并增加了七个食虫性中气门螨物种。本综述表明,捕食性中气门螨确实具有明确合理目的的螯肢设计。几乎在整个体型类别中,从类似蠕虫的猎物喂养(“粉碎/捣碎”杀死)功能组到微节肢动物喂养(“主动猎物切割/切片/砍杀”杀死)功能组的捕食方式的转变都伴随着:螯肢伸展的增加,螯肢口裂的增大,形态估计的螯肢粉碎力的增大,以及螯肢的内收杠杆臂速度比的下降。小尺寸很重要。几种 uropodines(Eviphis ostrinus、杂食性 Trachytes aegrota、Urodiaspis tecta 和 Uropoda orbicularis)的螯肢(伸展距离)比它们的螯肢口裂所暗示的要长,即使考虑到中气门螨的异速生长。它们可能是:类似蛇颈龙的高速捕食者,以腐肉为食的清道夫(如长脖子秃鹫),探测/挖掘裂缝中隐藏的线虫的觅食者,或者是吃小碎块/碎片食物的捕食者。一些 uropodoids 的螯肢和螯爪可能像建筑工地的机械挖掘机一样工作,带有小斗。可能的锄耕/推土、孢子破裂和类似剑齿猫的突击动作被讨论用于其他物种。微小的变化使小型中气门螨成为捕食-清道夫(中型肉食者)或捕食-真菌食者(次肉食者)。一些 uropodines(例如,类似蠕虫的猎物捕食者 Alliphis siculus 和 Uropoda orbicularis)的螯肢设计与 astigmatids 和 cryptostigmatids 相似,表明可能存在兼性腐生。大小很重要-中气门螨的强制性捕食设计(超肉食性)开始于螯肢口裂>150μm 和螯肢伸展>350μm(即大约 500-650μm 的体型)。这些较大物种与 solifugids 的营养设计共性表明。Veigaia 物种具有低的螯肢速度比和其他形态强化的专门化,似乎以协同的方式特别适应捕食活跃的软而快速移动的弹尾目(弹尾目)。Veigaia cerva 的螯肢口裂明显大于其螯肢伸展所推断的比例,表明它是一种卓越的鳄鱼式的坐待或伏击捕食者。较小的螯肢口裂、较低的螯肢伸展、中等速度比的蠕虫式摄食习惯设计变体支持植食性粉虱的摄食。在节肢动物附肢发育的进化中发现了资源分割模型的证据。与甲壳类动物的爪子和脊椎动物的下颌进行了比较。Alliphis siculus 和 Rhodacarus strenzkei 是非常强大的大型螨类,尽管体型较小。寄生性天敌表现出类似犬科动物的营养设计。食线虫的 Alliphis halleri 的螯肢表现出类似猫科动物的特征。Glyphtholaspis confusa 具有类似鬣狗的螯肢齿。后者的螯肢口裂明显小于其螯肢伸展所暗示的比例,再加上高螯肢速度比和高估计的螯肢粉碎力,使其能够通过粉碎(硬食性)来喂养不动的坚硬蝇卵/蛹。考虑了节肢动物的取向。捕食性特化通常与属相匹配,尤其是在较大的中气门螨中,它们的体型可能会有很大的不同。与 holothyrids 和 opilioacarids 的比较表明,前者的螯肢螯爪是切割式的,而后者的螯肢螯爪是粉碎式的。本研究包含了一个简单、经过验证、易于使用的“2:1 预测算法”,基于螯肢速度比的强度-速度权衡,用于生态学家在野外进行测试。