Suppr超能文献

MAGI:一种代谢物注释和基因整合的方法。

MAGI: A Method for Metabolite Annotation and Gene Integration.

机构信息

Environmental Genomics and Systems Biology Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.

Data Analytics and Visualization Group, Computational Research Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.

出版信息

ACS Chem Biol. 2019 Apr 19;14(4):704-714. doi: 10.1021/acschembio.8b01107. Epub 2019 Apr 4.

Abstract

Metabolomics is a widely used technology for obtaining direct measures of metabolic activities from diverse biological systems. However, ambiguous metabolite identifications are a common challenge and biochemical interpretation is often limited by incomplete and inaccurate genome-based predictions of enzyme activities (that is, gene annotations). Metabolite Annotation and Gene Integration (MAGI) generates a metabolite-gene association score using a biochemical reaction network. This is calculated by a method that emphasizes consensus between metabolites and genes via biochemical reactions. To demonstrate the potential of this method, we applied MAGI to integrate sequence data and metabolomics data collected from Streptomyces coelicolor A3(2), an extensively characterized bacterium that produces diverse secondary metabolites. Our findings suggest that coupling metabolomics and genomics data by scoring consensus between the two increases the quality of both metabolite identifications and gene annotations in this organism. MAGI also made biochemical predictions for poorly annotated genes that were consistent with the extensive literature on this important organism. This limited analysis suggests that using metabolomics data has the potential to improve annotations in sequenced organisms and also provides testable hypotheses for specific biochemical functions. MAGI is freely available for academic use both as an online tool at https://magi.nersc.gov and with source code available at https://github.com/biorack/magi .

摘要

代谢组学是一种广泛应用的技术,可从各种生物系统中直接获取代谢活动的直接测量值。然而,代谢物鉴定不明确是一个常见的挑战,生化解释通常受到酶活性的基于基因组的预测(即基因注释)不完整和不准确的限制。代谢物注释和基因整合(MAGI)使用生化反应网络生成代谢物-基因关联评分。这是通过一种通过生化反应强调代谢物和基因之间共识的方法来计算的。为了展示该方法的潜力,我们将 MAGI 应用于整合来自链霉菌 A3(2)的序列数据和代谢组学数据,链霉菌 A3(2)是一种广泛研究的产生多种次级代谢物的细菌。我们的研究结果表明,通过对两者之间的共识进行评分来耦合代谢组学和基因组学数据,可以提高该生物体内代谢物鉴定和基因注释的质量。MAGI 还对注释较差的基因进行了生化预测,这些预测与关于该重要生物的广泛文献一致。这项有限的分析表明,使用代谢组学数据有可能改善测序生物体内的注释,并为特定生化功能提供可测试的假设。MAGI 可免费用于学术用途,可在 https://magi.nersc.gov 上作为在线工具使用,也可在 https://github.com/biorack/magi 上获得源代码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验